Oxidative stress-mediated mouse liver lesions caused by Clonorchis sinensis infection.

Int J Parasitol

Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea. Electronic address:

Published: March 2016

Clonorchis sinensis is a high-risk pathogenic helminth that strongly provokes inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma in chronically infected individuals. Chronic inflammation is associated with an increased risk of various cancers due to the disruption of redox homeostasis. Accordingly, the present study was conducted to examine the time course relationship between histopathological changes and the appearance of oxidative stress markers, including lipid peroxidation, enzymes involved in lipid peroxidation, and mutagenic DNA adducts in the livers of mice infected with C. sinensis, as well as proinflammatory cytokines in infected mouse sera. Histopathological phenotypes such as bile duct epithelial hyperplasia, periductal fibrosis, edema and inflammatory infiltration increased in infected livers in a time-dependent manner. Intense immunoreactivity of lipid peroxidation products (4-hydroxy-2-nonenal; malondialdehyde), cyclooxygenase-2, 5-lipoxygenase and 8-oxo-7,8-dihydro-2'-deoxyguanosine were concomitantly observed in these injured regions. We also found elevated expressions of cyclooxygenase-2 and 5-lipoxygenase in C. sinensis excretory-secretory product-treated cholangiocarcinoma cells. Moreover, the levels of proinflammatory cytokines such as TNF-α, ILβ-1 and IL-6 were differentially upregulated in infected sera. With regard to oxidative stress-mediated carcinogenesis, our findings suggest that C. sinensis infestation may disrupt host redox homeostasis, creating a damaging environment that favors the development of advanced hepatobiliary diseases such as clonorchiasis-associated cholangiocarcinoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpara.2015.11.003DOI Listing

Publication Analysis

Top Keywords

lipid peroxidation
12
oxidative stress-mediated
8
clonorchis sinensis
8
epithelial hyperplasia
8
hyperplasia periductal
8
periductal fibrosis
8
redox homeostasis
8
proinflammatory cytokines
8
cyclooxygenase-2 5-lipoxygenase
8
sinensis
5

Similar Publications

Colorectal cancer (CRC) is one of the most prevalent and deadly malignancies worldwide. Recently, ferroptosis, a novel form of regulated cell death characterized by iron dependency and lipid peroxidation, has garnered significant attention from researchers. The mechanisms underlying ferroptosis, including intracellular iron levels, lipid peroxidation, and antioxidant system regulation, offer new insights into cancer treatment strategies.

View Article and Find Full Text PDF

Members of the genus are the conventional medicinal plants used in the therapeutic management of numerous ailments, especially for their antioxidant and pharmacological activities. The crude extract of was profiled using high-resolution GC-MS and LC-MS/MS techniques to determine possible bioactive compounds that are vital to the antioxidant activity. A total of 52 and 63 bioactive compounds have been detected in GC-MS chromatograms using different solvents (methanol and ethanol) in leaf extracts, representing the presence of certain bioactive compounds.

View Article and Find Full Text PDF

Epigenetic regulation of targeted ferroptosis: A new strategy for drug development.

J Pharm Anal

October 2024

The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.

Ferroptosis is a newly discovered form of cell death that is influenced by iron levels and is triggered by cellular metabolism and excessive lipid peroxidation. Epigenetic regulation plays a crucial role in the development and progression of diseases, making it essential to understand these mechanisms in order to identify potential targets for drug development and clinical treatment. The intersection of ferroptosis and epigenetics has opened up new avenues for research in drug development, offering innovative strategies for combating diseases.

View Article and Find Full Text PDF

The accumulation of lipids in hepatocytes in nonalcoholic fatty liver disease (NAFLD) leads to an increase in reactive oxygen species and changes in the intracellular microenvironment, while ferroptosis is the result of the accumulation of iron-dependent lipid peroxidation. Studies have shown that ferroptosis plays an important role in the pathogenesis of NAFLD. Herein, we have developed a viscosity-sensitive fluorescence probe PTSO with near-infrared emission and a large Stokes shift, which were achieved by introducing the sulfone group into the dioxothiochromen-malononitrile fluorophore as an electron-withdrawing group.

View Article and Find Full Text PDF

This study aimed to investigate the impact of X-ray irradiation pretreatment at varying doses (0.5, 1.0, 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!