A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Five-descriptor model to predict the chromatographic sequence of natural compounds. | LitMetric

Despite the recent introduction of mass detection techniques, ultraviolet detection is still widely applied in the field of the chromatographic analysis of natural medicines. Here, a neural network cascade model consisting of nine small artificial neural network units was innovatively developed to predict the chromatographic sequence of natural compounds by integrating five molecular descriptors as the input. A total of 117 compounds of known structure were collected for model building. The order of appearance of each compound was determined in gradient chromatography. Strong linear correlation was found between the predicted and actual chromatographic position orders (Spearman's rho = 0.883, p < 0.0001). Application of the model to the external validation set of nine natural compounds was shown to dramatically increase the prediction accuracy of the real chromatographic order of multiple compounds. A case study shows that chromatographic sequence prediction based on a neural network cascade facilitated compound identification in the chromatographic fingerprint of Radix Salvia miltiorrhiza. For natural medicines of known compound composition, our method provides a feasible means for identifying the constituents of interest when only ultraviolet detection is available.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.201501016DOI Listing

Publication Analysis

Top Keywords

chromatographic sequence
12
natural compounds
12
neural network
12
predict chromatographic
8
sequence natural
8
ultraviolet detection
8
natural medicines
8
network cascade
8
chromatographic
7
natural
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!