Filamentation as primitive growth mode?

Phys Biol

Laboratoire d'Informatique (LIX), École Polytechnique, F-91128 Palaiseau Cedex, France. Laboratoire Matière et Systèmes Complexes, UMR7057 CNRS, Université Paris Diderot, F-75205 Paris Cedex 13, France.

Published: December 2015

Osmotic pressure influences cellular shape. In a growing cell, chemical reactions and dilution induce changes in osmolarity, which in turn influence the cellular shape. Using a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, we find that when the membrane is so flexible that its shape adjusts itself quasi-instantaneously to balance the osmotic pressure, the protocell either grows filamentous or fails to grow. This behavior is consistent with a mathematical proof. This suggests that filamentation may be a primitive growth mode resulting from the simple physical property of balanced osmotic pressure. We also find that growth is favored if some chemical species are only present inside the protocell, but not in the outside growth medium. Such an insulation requires specific chemical schemes. Modern evolved cells such as E. coli meet these requirements through active transport mechanisms such as the phosphotransferase system.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1478-3975/12/6/066024DOI Listing

Publication Analysis

Top Keywords

osmotic pressure
12
filamentation primitive
8
primitive growth
8
cellular shape
8
growth
4
growth mode?
4
mode? osmotic
4
pressure influences
4
influences cellular
4
shape growing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!