A novel method (i.e., continuous magnetic cell separation in a microfluidic channel) is demonstrated to be capable of inducing multifractionation of mixed cell suspensions into multiple outlet fractions. Here, multicomponent cell separation is performed with three different distinguishable magnetic nanoclusters (MnFe2O4, Fe3O4, and CoFe2O4), which are tagged on A431 cells. Because of their mass magnetizations, which can be ideally altered by doping with magnetic atom compositions (Mn, Fe, and Co), the trajectories of cells with each magnetic nanocluster in a flow are shown to be distinct when dragged under the same external magnetic field; the rest of the magnetic characteristics of the nanoclusters are identically fixed. This proof of concept study, which utilizes the magnetization-controlled nanoclusters (NCs), suggests that precise and effective multifractionation is achievable with high-throughput and systematic accuracy for dynamic cell separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5b04111 | DOI Listing |
Methods Cell Biol
January 2025
Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain. Electronic address:
T cell exhaustion is a state of dysfunction that can occur due to persistent exposure to antigens, such as in the tumor microenvironment. The progressive loss of effector functions in exhausted T cells can lead to resistance to immune checkpoint inhibitors and adoptive cell immunotherapies. Improving our understanding of the exhaustion process is thus crucial for optimizing the clinical outcomes of immunotherapy.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany. Electronic address:
T cells expressing the γδ T-cell receptor (TCR) represent a numerically small proportion of total T cells. Unlike αβ T cells they are activated by non-peptide antigens independently of MHC-presentation. γδ T cells have been recognized as a favorable prognostic marker across different tumor entities.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Pathology, Leiden University Medical Center, Leiden, The Netherlands. Electronic address:
In recent years, significant advancements have been achieved in the development of multiplex imaging methodologies for immunophenotyping, enabling a comprehensive characterization of the complexity of tumor microenvironments. Imaging mass cytometry combines the detection of over 40 cellular targets with spatial information, enabling the identification of not only which cells are present in a tissue but also their localization relative to each other. Here, we present an easy-to-implement imaging mass cytometry workflow that ranges from antibody selection and testing to running a full panel.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, United States. Electronic address:
The tumor microenvironment (TME) consists of complex interactions between cellular and extracellular components, among which the immune system is known to play an integral role in disease progression and response to therapy. Cytokines and chemokines are cell signaling proteins used by immune cells to communicate with each other as well as with other cell types in the body. These proteins control systemic and local immune responses and levels of cytokines/chemokines in the TME have been associated with tumor outcomes.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
de Duve Institute, Université catholique de Louvain, Brussels, Belgium. Electronic address:
Neutrophils were historically considered a homogenous population of cells with functions limited to innate immunity against external threats. However, with the rise of immunotherapy, recent works have shown that neutrophils are also important actors in immuno-oncology. In this context, neutrophils appear as a more heterogenous population of cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!