The silicon-rich SiN(x) films were fabricated on Si(100) substrate and quartz substrate at different substrate temperatures varying from room temperature to 400 degrees C by bipolar pulse ane RF magnetron co-sputtering deposition technique. After deposition, the films were annealed in a nitrogen atmosphere by rapid photothermal annealing at 1050 degrees C for 3 minutes. This thermal step allows the formation of the silicon quantum dots. Fourier transform infrared spectroscopy, Raman spectroscopy, grazing incidence X-ray diffraction and photoluminescence spectroscopy were used to analyze the bonding configurations, microstructures and luminescence properties of the films. The experimental results showed that: silicon-rich Si-N bonds were found in Fourier transform infrared spectra, suggesting that the silicon-rich SiN, films were successfully prepared; when the substrate temperature was not lower than 200 degrees C, the Raman spectra of the films showed the transverse optical mode of Si-Si vibration, while the significant diffraction peaks of Si(111) and Si(311) were shown in grazing incidence X-ray diffraction spectra, confirming the formation of silicon quantum dots; our work indicated that there was an optimal substrate temperature (300 degrees C), which could significantly increase the amount and the crystalline volume fraction of silicon quantum dots; three visible photoluminescence bands can be obtained for both 30 degrees C sample and 400 degrees C sample, and in combination with Raman results, the emission peaks were reasonably explained by using the quantum confinement effect and radiative recombination defect state of Si nanocrystals; the average size of the silicon quantum dots is 3.5 and 3.4 nm for the 300 degrees C sample and 400 degrees C sample, respectively. These results are useful for optimizing the fabrication parameters of silicon quantum dots embedded in SiN. thin films and have valuable implications for silicon based photoelectric device applications.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!