In order to evaluate the effect of organic loading rate ( OLR) on the formation of aerobic granular sludge (AGS), a lab-scale cylindrical SBR reactor (sodium acetate as carbon source) was constructed and inoculated with collected sewage sludge. The evolution of morphology, microbial activity and extracellular polymeric substances (EPS) characteristics of sludge samples in the reactor were recorded and analyzed. The results showed that AGS has the highest growth rate under the condition of 3. 20-4. 84 kg.(m3.d)-1 OLR, and a selective discharging strategy of the floccular sludge was suggested to maintain the predominance of AGS in reactor. The accumulated sludge concentration, SVI30, mean granule size, settling velocity and SOUR value of the AGS in steady-state operated SBR was 23. 9 g.L-1, 20 mL.g-1, 1. 4 mm, 102 m.h-1 and 50. 2 mg.(g.h)-1, respectively. The granulation process not only obviously changed the sludge appearance, but also significantly improved the microbial activity. Meanwhile, linear correlation was observed between the variation of protein/polysaccharide concentration and the granule size of AGS. Thus, variation of protein/ polysaccharide concentration of the EPS could be applied as an indicator for optimization of the cultivation method of AGS.

Download full-text PDF

Source

Publication Analysis

Top Keywords

organic loading
8
loading rate
8
aerobic granular
8
microbial activity
8
granule size
8
sludge
6
ags
6
[effect increasing
4
increasing organic
4
rate formation
4

Similar Publications

Organic solar cells (OSCs) have recently achieved efficiencies of >20% in single-junction unit cells owing to rapid advancements in materials and device technologies. Large-area OSCs face several challenges that adversely affect their efficiency compared to small unit cells. These challenges include increased resistance loads derived from their larger dimensions, as well as limitations related to morphology, miscibility, and crystallinity.

View Article and Find Full Text PDF

Aim: It was the aim of this study to compare two different dry reverse micelle (RM) preparation methods for the incorporation of hydrophilic drugs into oral self-emulsifying drug delivery systems (SEDDS).

Methods: Cationic ethacridine lactate, anionic fluorescein sodium salt and the antibiotic peptide bacitracin were solubilized in RM containing sodium docusate, soy phosphatidylcholine and sorbitan monooleate in highly lipophilic oils such as squalane. In the dry addition (DA) method, drugs were directly added to empty RM in their powder form.

View Article and Find Full Text PDF

Epilepsy, the most common neurological disorder worldwide, is characterized by sudden paroxysmal brain activity, which can be generalized or focal. Extensive research has explored various treatment strategies for this condition. Our study employed a pilocarpine (PL)-induced seizure model in zebrafish (Danio rerio) embryos and larvae to assess the effects of carbamazepine (CBZ)-loaded chitosan-coated PLGA-Zein nanoparticles (NPs) over 96 hours.

View Article and Find Full Text PDF

Fe-N-C catalysts are considered promising substitutes for Pt-based catalysts at the cathode in direct methanol fuel cells (DMFCs) owing to their great methanol tolerance. However, Fe-N-C-based DMFCs commonly suffer from a decreased performance under extremely high methanol concentrations and exhibit poor stability, while the underlying mechanism remains controversial. In this study, a self-degradation phenomenon in a passive Fe-N-C-based DMFC was investigated in detail.

View Article and Find Full Text PDF

MOF-derived intelligent arenobufagin nanocomposites with glucose metabolism inhibition for enhanced bioenergetic therapy and integrated photothermal-chemodynamic-chemotherapy.

J Nanobiotechnology

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.

Bioenergetic therapy based on tumor glucose metabolism is emerging as a promising therapeutic modality. To overcome the poor bioavailability and toxicity of arenobufagin (ArBu), a MOF-derived intelligent nanosystem, ZIAMH, was designed to facilitate energy deprivation by simultaneous interventions of glycolysis, OXPHOS and TCA cycle. Herein, zeolitic imidazolate framework-8 was loaded with ArBu and indocyanine green, encapsulated within metal-phenolic networks for chemodynamic therapy and hyaluronic acid modification for tumor targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!