AI Article Synopsis

  • Borate chemistry presents unique benefits for iron-based polyanionic compounds, particularly lithium iron borate, which is an appealing cathode material for batteries due to its lightweight structure and high theoretical capacity.
  • Despite its advantages, challenges like achieving phase purity and high electrochemical activity have stalled its development.
  • This study introduces a simple and scalable synthesis method for obtaining pure LiFeBO3, addressing stability issues with Fe(2+), and reports new findings on lithium diffusion rates using Mössbauer spectroscopy.

Article Abstract

Borate chemistry offers attractive features for iron based polyanionic compounds. For battery applications, lithium iron borate has been proposed as cathode material because it has the lightest polyanionic framework that offers a high theoretical capacity. Moreover, it shows promising characteristics with an element combination that is favorable in terms of sustainability, toxicity, and costs. However, the system is also associated with a challenging chemistry, which is the major reason for the slow progress in its further development as a battery material. The two major challenges in the synthesis of LiFeBO3 are in obtaining phase purity and high electrochemical activity. Herein, we report a facile and scalable synthesis strategy for highly pure and electrochemically active LiFeBO3 by circumventing stability issues related to Fe(2+) oxidation state by the right choice of the precursor and experimental conditions. Additionally, we carried out a Mössbauer spectroscopic study of electrochemical charged and charged-discharged LiFeBO3 and reported a lithium diffusion coefficient of 5.56 × 10(-14) cm(2) s(-1) for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b10747DOI Listing

Publication Analysis

Top Keywords

mechanical milling
4
milling assisted
4
assisted synthesis
4
synthesis electrochemical
4
electrochemical performance
4
performance high
4
high capacity
4
lifebo3
4
capacity lifebo3
4
lifebo3 lithium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!