AI Article Synopsis

  • - A multidrug-resistant clone of Salmonella enterica serovar Infantis, producing the ESBL gene blaCTX-M-1, was first identified in the Italian broiler chicken industry in 2011 and subsequently linked to human infections in 2013-2014.
  • - Researchers analyzed 49 resistant isolates from humans and animals between 2011-2014, which showed resistance to several antibiotics, while also studying susceptible isolates from earlier years (2001-2014).
  • - The resistant strains carry a large conjugative megaplasmid with various resistance genes and virulence factors, indicating a significant risk for human health and emphasizing the need for effective risk management strategies in food production.

Article Abstract

We report the spread of a clone of multidrug-resistant (MDR), ESBL-producing (blaCTX-M-1) Salmonella enterica subsp. enterica serovar Infantis, in the Italian broiler chicken industry and along the food-chain. This was first detected in Italy in 2011 and led to human infection in Italy in 2013-2014.A set (n = 49) of extended-spectrum cephalosporin (ESC)-resistant (R) isolates of S. Infantis (2011-2014) from humans, food-producing animals and meat thereof, were studied along with a selected set of earlier and more recent ESC-susceptible (ESC-S) isolates (n = 42, 2001-2014). They were characterized by macrorestriction-PFGE analysis and genetic environment of ESC-resistance. Isolates representative of PFGE-patterns and origin were submitted to Whole Genome Sequencing. The emerging ESC-R clone, detected mainly from broiler chickens, broiler meat and humans, showed a minimum pattern of clinical resistance to cefotaxime, tetracycline, sulfonamides, and trimethoprim, beside ciprofloxacin microbiological resistance (MIC 0.25 mg/L). All isolates of this clone harbored a conjugative megaplasmid (~ 280-320 Kb), similar to that described in ESC-susceptible S. Infantis in Israel (pESI-like) in 2014. This megaplasmid carried the ESBL gene blaCTX-M-1, and additional genes [tet(A), sul1, dfrA1 and dfrA14] mediating cefotaxime, tetracycline, sulfonamide, and trimethoprim resistance. It also contained genes conferring enhanced colonization capability, virulence (fimbriae, yersiniabactin), resistance and fitness (qacE1, mer) in the intensive-farming environment. This emerging clone of S. Infantis has been causing infections in humans, most likely through the broiler industry. Since S. Infantis is among major serovars causing human infections in Europe and is an emerging non-typhoidal Salmonella globally, further spread of this lineage in primary productions deserves quick and thorough risk-management strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696813PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144802PLOS

Publication Analysis

Top Keywords

broiler meat
8
meat humans
8
italy 2011
8
cefotaxime tetracycline
8
infantis
6
broiler
5
emergence clonal
4
clonal lineage
4
lineage multidrug-resistant
4
multidrug-resistant esbl-producing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!