A new class of hollandite Ba-Mn-Ti oxide nanocrystals was synthesized. They are synthetic min- erals exclusively composed of Ba, Ti, Mn, and O elements. The BaMn3Ti4O14.25 nanocrystals (designated BMT-134), a typical member of this newly discovered hollandite oxide group, possess a giant dielectric constant and multiferroic properties. In the present paper, electrical properties of nanocrystals of BMT-134 are studied and compared with BMT-125 (BaMn2TiO14.5). We studied the combined complex impedance and temperature dependent conductivity behaviors. The results prove that electron hopping plays a significant role in the electrical properties of the new hollandite BMT nanocrytals. In addition, the dielectric behavior and generation of ferroelectricity can be interpreted on the basis of Mott polaron theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.10545 | DOI Listing |
ACS Appl Electron Mater
December 2024
CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia.
Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones.
View Article and Find Full Text PDFSpace Sci Rev
December 2024
Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, Graz, 8042 Austria.
Plasma flows with enhanced dynamic pressure, known as magnetosheath jets, are often found downstream of collisionless shocks. As they propagate through the magnetosheath, they interact with the surrounding plasma, shaping its properties, and potentially becoming geoeffective upon reaching the magnetopause. In recent years (since 2016), new research has produced vital results that have significantly enhanced our understanding on many aspects of jets.
View Article and Find Full Text PDFACS Appl Energy Mater
December 2024
Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne NE1 8QH, United Kingdom.
The chalcogenide perovskite BaZrS has strong visible light absorption and high chemical stability, is nontoxic, and is made from earth-abundant elements. As such, it is a promising candidate material for application in optoelectronic technologies. However, the synthesis of BaZrS thin-films for characterization and device integration remains a challenge.
View Article and Find Full Text PDFPrecis Chem
December 2024
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
One-dimensional (1D) functional nanowires are widely used as nanoscale building blocks for assembling advanced nanodevices due to their unique functionalities. However, previous research has mainly focused on nanowire functionality, while neglecting the structural stability and damage resistance of nanowire assemblies, which are critical for the long-term operation of nanodevices. Biomaterials achieve excellent mechanical stability and damage resistance through sophisticated structural design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!