New nanocomposites, poly(diphenylamine-co-3-aminobenzonitrile)/palladium (P(DPA-co-3ABN)/Pd) and poly(diphenylamine)/palladium (PDPA/Pd), have been prepared by pulse potentiostatic method and used as electrocatalysts for borohydride oxidation. Linear sweep voltammogram of P(DPA-co-3ABN)/Pd-ME exhibited the oxidation wave between -0.8 V and 0.4 V that corresponds to the direct, potentially four-electron, oxidation of borohydride ions. The peak current for borohydride oxidation is much higher at P(DPA-co-3ABN)/Pd-ME electrode as compared to PDPA/Pd-ME. The incorporation of 3ABN units augments electrocatalytic behavior and thermal stability for the P(DPA-co-3ABN)/Pd catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2015.10532DOI Listing

Publication Analysis

Top Keywords

borohydride oxidation
12
oxidation
5
deposition polydiphenylamine-co-3-aminobenzonitrile/palladium
4
polydiphenylamine-co-3-aminobenzonitrile/palladium nanocomposite
4
nanocomposite film
4
film evaluation
4
evaluation electrocatalytic
4
electrocatalytic activity
4
borohydride
4
activity borohydride
4

Similar Publications

A practical and efficient reaction for C-selenylation of 1,4-naphthoquinones has been explored. This coupling reaction of two redox structural motifs, such as 2-bromo-1,4-naphthoquinone with diaryldiselenide/ebselen has been achieved by using sodium borohydride reducing agent at room temperature. Using this approach, several 2-selenylated-1,4-naphthoquinones were obtained in moderate to good yields and thoroughly characterized by multinuclear (H, C, and Se) NMR, cyclic voltammetry, and mass spectrometry.

View Article and Find Full Text PDF

An effective drug-free hydrogel for accelerating the whole healing process of bacteria-infected wounds.

Biomater Sci

December 2024

Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.

Wound healing is a dynamic and complex process involving hemostasis, inflammation, fibroblast proliferation, and tissue remodeling. This process is highly susceptible to bacterial infection, which often leads to impaired and delayed wound repair. While antibiotic therapy remains the primary clinical approach for treating bacteria-infected wounds, its widespread use poses a significant risk of developing bacterial resistance.

View Article and Find Full Text PDF

Engineering LiBH-Based Materials for Advanced Hydrogen Storage: A Critical Review of Catalysis, Nanoconfinement, and Composite Design.

Molecules

December 2024

College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China.

Lithium borohydride (LiBH) has emerged as a promising hydrogen storage material due to its exceptional theoretical hydrogen capacity (18.5 wt.%).

View Article and Find Full Text PDF

Water contamination by nitro compounds from various industrial processes has significantly contributed to environmental pollution and severely threatened aquatic ecosystems. Inexpensive, efficient, and environmentally benign catalysts are required for the catalytic reduction of such nitro compounds. This study reports the fabrication of various nanocomposites (NCs) of copper oxide nanoparticles (CuO NPs) supported on a kaolin sheet using straightforward and simple one-pot synthesis procedures that control the metal precursor to kaolin ratios.

View Article and Find Full Text PDF

The shortcomings of traditional energy systems drive the transition toward sustainable energy sources. This study explores the production of hydrogen, an environmentally friendly energy source, through the photo-hydrolysis of sodium borohydride (NaBH), known for its non-toxic nature and high hydrogen storage capacity. The photoreaction is facilitated by visible light, utilizing nano-alumina or zirconia as catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!