Magnéli phase titanium oxides (MPTOs), possess high electrical conductivity and chemical stability, are promising support materials for the development of novel electrocatalyst in polymer electrolyte fuel cells (PEFCs). Despite MPTO's extremely low specific surface area (1 m2/g or less), high Pt loading (40 wt%) and excellent Pt particle-size distribution were obtained by the modified borohydride method. The reasons were discussed and compared with polyol method. Membrane electrode assembly (MEA) performance of those Pt/MPTO catalysts were found to be 169.7 and 366.2 mA/cm2 at 0.7 V for H2/air and H2/O2, respectively. The accelerated stress tests (ASTs) showed superior durability of the Pt/MPTO catalyst as a cathode electrode. After 10,000 cycles of high-voltage cycling test from 0.9 V and 1.3 V RHE, no significant performance degradation of the Pt/MPTO electrode was observed comparing with Pt/C. Thus, MPTOs can be considered as a good substitute of carbon supports in fuel cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.10549 | DOI Listing |
Nanoscale
January 2025
Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru 562162, India.
Bifunctional oxygen electrocatalysis is a pivotal process that underpins a diverse array of sustainable energy technologies, including electrolyzers and fuel cells. Metal selenides have been identified as highly promising candidates for oxygen electrocatalysts with electronic structure engineering that lies at the heart of catalyst design. Two-phase Fe-doped nitrogen carbon (NC)-supported nickel selenides were synthesized using a coordination polymer template.
View Article and Find Full Text PDFNano Lett
January 2025
Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, Tennessee 37235, United States.
Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency.
View Article and Find Full Text PDFInorg Chem
January 2025
Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan.
Electrochemical devices that can operate at temperatures of 200-300 °C are expected to become the next-generation energy conversion devices in fuel cells and electrosynthesis, which are important for achieving carbon neutrality. Proton conductors based on phosphate glasses are being developed as candidate materials for such devices. We recently developed a glass proton conductor by using silicophosphoric acid based on the idea of solidifying phosphoric acid with silicon as a cross-linking glass framework.
View Article and Find Full Text PDFSmall
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, 310003, China. Electronic address:
Background: Amplified imaging of microRNA (miRNA) in cancer cells is essential for understanding of the underlying pathological process. Synthetic catalytic DNA circuits represent pivotal tools for miRNA imaging. However, most existing catalytic DNA circuits can not achieve the reactant recycling operation in cells and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!