Titanium dioxide-gold nanocomposite ((TiO2-Au)(nps)) materials dispersed in poly(diallyldimethylammonium chloride) (PDDA) polymer electrolyte are employed as solid-state electrolytes in a dye-sensitized solar cell (DSSC) containing nanocrystalline TiO2 nanoparticle (P25) or (P25-Au)(nps) thin film photoanode adsorbed with a near-IR dye sensitizer, nickel-phthalocyanine (NiPcTs). The photocurrent-photovoltage characteristics of the DSSCs are evaluated under standard AM 1.5 G simulated solar irradiation of 100 mW/cm2. The (TiO2-Au)(nps) nanocomposite material incorporated into the PDDA polymer electrolyte promotes interfacial charge transfer process, reduces crystallinity of the polymer electrolyte and enhances mobility of the /-/I3- redox couple, which are resulted in -6-fold increase in the overall solar to electrical energy conversion efficiency when compared to the unmodified polymer electrolyte based DSSC. When the P25 photoanode is replaced with the (P25-Au)(nps) photoanode, a further 8-fold increase in the overall energy conversion efficiency is achieved, owing to the increas in the charge transport through the photoanode. The photovoltaic performance of the present DSSC configuration is also compared with that of a cell sensitized by using standard N719 dye.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.10529 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Tongji University, School of Chemical Science and Engineering, 1239 Siping Road, 200092, Shanghai, CHINA.
Protons (H+) with the smallest size and fastest redox kinetics are regarded as competitive charge carriers in the booming Zn-organic batteries (ZOBs). Developing new H+-storage organic cathode materials with multiple ultralow-energy-barrier protophilic sites and super electron delocalization routes to propel superior ZOBs is crucial but still challenging. Here we design multiple protophilic redox-active reticular organic skeletons (ROSs) for activating better proton storage, triggered by intermolecular H-bonding and π-π stacking interactions between 2,6-diaminoanthraquinone and 2,4,6-triformylphloroglucinol nanofibrous polymer.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.
Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China. Electronic address:
Meliorating the behavior deposition of lithium polysulfides (LiPS) is crucial for enhancing the electrochemical performance of sulfur cathodes, which could be implemented by the precise modulation on the catalytic host. Herein, heterostructure engineering is employed to tune up the catalytic capability of CeVO, by introducing CeO through a simple adjustment in the addition sequence of reactants. The formed CeVO/CeO heterostructure has been demonstrated to exhibit appropriate interaction strength with LiPS for accelerating the catalytic conversion process, as well as an engineered surface for inducing three dimensional (3D) LiS deposition, thereby endowing the corresponding sulfur cathodes with excellent electrochemical performance under harsh conditions.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina.
The focus of this work was to evaluate the differences between the thermal and mechanical effects generated by ultrasound waves on the properties of corn starch, which facilitate the subsequent enzymatic hydrolysis for the generation of porous starches. The results showed that both the thermal and mechanical effects have the capacity to disorganize/alter the structure of starch, impacting on its properties. Characteristics such as particle size, pasting and thermal properties (peak viscosity 1400-1800 cp.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.
Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!