We have determined shear viscosities as a function of temperature for several liquid high temperature polymers (HTPs) as potential coatings for solid state thermoelectric generators (TEGs) as well as for TE coolers (TECs). To each HTP we added in turn several ceramic nanopowders: alumina, silica and multi-wall carbon nanotubes (MWCNTs). The shear rate applied range is from 0.0002 to 60 s(-1). The results are compared to those for neat HTPs. For a given HTP, we obtain for some nanopowders significant lowering of viscosity, or else a significant increase, or else a small effect only. Possible reasons for such differences in behavior are discussed in terms of the spatial structures of CNTs (random orientations at low temperatures), and the interactions between functional groups on HTPs and atoms in the nanoceramics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.10750 | DOI Listing |
J Biomed Mater Res B Appl Biomater
January 2025
Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt.
Treating severe bone deformities and abnormalities continues to be a major clinical hurdle, necessitating the adoption of suitable materials that can actively stimulate bone regeneration. Magnesium phosphate (MP) is a material that has the ability to stimulate the growth of bones. The current study involved the synthesis of mesoporous MP and lanthanum (La)-doped nanopowders using a chemical precipitation approach.
View Article and Find Full Text PDFHeliyon
November 2024
Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
Extrusion based 3-D printing has been extensively applied to create geometrically complex composite polymer-ceramic structures as bone tissue substitute. The rheological features of the formulated bioink that regulate the printability and resolution of the printed scaffolds, rely on physicochemical properties of ink components, mainly their composition and chemical structure. The aim of this study was to evaluate the effect of different content of 45S5 bioglass (BG) and β-tricalcium phosphate (β-TCP) nanoparticles on the rheological behavior of printing inks and final composite scaffolds based on polycaprolactone (PCL)/BG/β-TCP.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
Hydroxyapatite (HA) granules are frequently used in orthopedics and maxillofacial surgeries to fill bone defects and stimulate the regeneration process. Optimal HA granules should have high biocompatibility, high microporosity and/or mesoporosity, and high specific surface area (SSA), which are essential for their bioabsorbability, high bioactivity (ability to form apatite layer on their surfaces) and good osseointegration with the host tissue. Commercially available HA granules that are sintered at high temperatures (≥ 900 °C) are biocompatible but show low porosity and SSA (2-5 m/g), reduced bioactivity, poor solubility and thereby, low bioabsorbability.
View Article and Find Full Text PDFWe report on micro-Raman spectra of several mixed laser ceramics, i.e., 5at.
View Article and Find Full Text PDFACS Omega
October 2024
King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.
Brownmillerite KBiFeO (KBFO) and KbiFeTiO (KBFTO) ceramics were synthesized using the prereacted nanopowders of KFeO (KFO) and BiFeO (BFO), and KFO and BiFeTiO (BFTO), respectively, via the reactive templated method. The powder X-ray diffraction patterns confirmed the monoclinic phase of the KBFO and KBFTO samples. The incorporation of Ti at Fe site prevented the formation of a secondary phase (BiFeO) in the KBFTO sample.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!