In this paper, we report a simple but novel aqueous solution based 'one-pot' method for preparation of (NiFe2O4)x-(SrFe12O19)1-x nanocomposites consist of hard ferrite-soft ferrite phases. A physical mixing method has also been employed to prepare nanocomposites having same compositions. The effects of synthetic methodologies on the microstructures of the nanocomposites as well as their magnetic and microwave absorption properties have been evaluated. Crystal structures and microstructures of these composites have been investigated by using X-ray diffraction, transmission electron microscope and scanning electron microscope. In the nanocomposites, prepared by both methods, presence of nanocrystalline NiFe2O4 and SrFe12O19 phases was detected. However, nanocomposites, prepared by one-pot method, possessed better homogeneous distribution of hard and soft ferrite phases than the nanocomposites, prepared by physical mixing method. Nanocomposites, prepared by one-pot method, demonstrated significant spring exchange coupling interaction between hard and soft ferrite phases and exhibited magnetically single phase behaviour. The spring exchange coupling interaction enhanced the magnetic properties (high saturation magnetization and coercivity) and microwave absorption properties of the nanocomposites, prepared by one-pot method, in comparison with the nanocomposites prepared by physical mixing method as well as pure NiFe2O4 and SrFe12O19 nanoparticles. Minimum reflection loss of the composite was ~ -17 dB (i.e., 98% absorption) at 8.2 GHz for an absorber thickness of 3.2 mm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.10491 | DOI Listing |
Biomacromolecules
January 2025
LMSE - Faculty of Science, University of Sfax, BP 802, Sfax 3018, Tunisia.
This study reports the preparation of cellulose nanocrystals (CNCs) from commercial bleached eucalyptus Kraft pulp (BEKP) using a hydrothermal treatment in the presence of maleic acid (MA), followed by high-pressure homogenization. Compared with conventional hydrolysis methods, this approach offers significant advantages, including lower acid concentration, higher yield, and milder processing conditions. CNCs were produced with a high yield (70-85 wt %) by high-pressure homogenization of hydrothermally treated BEKP fibers with 10-20 wt % maleic acid at 150 °C, giving rise to a stable translucent gel of CNCs with a rod-like morphology (200-400 nm length and 10-40 nm width).
View Article and Find Full Text PDFRSC Adv
January 2025
Laboratory of Applied Inorganic Chemistry, Department of Inorganic Chemistry, University of Yaoundé I P.O. Box 812 Yaoundé Cameroon
In this study, kaolinite-poly(urea-formaldehyde) was successfully prepared through the polymerization of urea intercalated within the kaolinite structure. Polymerization was carried out under ambient conditions by immersing kaolinite-urea in formaldehyde. Evidence of urea intercalation and polymerization was obtained from FTIR, XRD, and thermal analysis (TG-DSC).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Electronic address:
This study aimed to synthesize a nanocomposite based on tertiary metal oxide FeO@CuO@ZnONPs, starch, ethylcellulose, and collagen, as well as evaluate its biological activities. The prepared nanocomposites were characterized using physicochemical analysis, which included FTIR, XRD, and DLS. Additionally, topographical analysis using FI-SEM, EDX, mapping, HR-TEM, and SAED affirmed the molecular structure and nanosized of formulated nanocomposites.
View Article and Find Full Text PDFTalanta
January 2025
International Ph. D Program in Innovative Technology of Biomedical Engineering & Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan. Electronic address:
Nanocomposites that mimic the characteristics of enzymes, commonly as nanozymes, can function as an efficient sensing material with high selectivity towards the targeted biological macromolecule. These nanozymes overcome of the challenges that arise when using natural enzymes as sensing material. This study presents a novel nanozyme, Copper Selenite (CuSeO) nanoparticles mounted on f-CNF, to electrochemically determine a potential cardiovascular biomarker, Glutathione (GSH).
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.
The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!