During crystallization screenings of commercially available hydrolytic enzymes, the new, hexagonal crystal form of CAL-B, has been discovered and hereby reported. The NAG molecules, which were closing the glycosylation site in the orthorhombic form, in hexagonal structure make the glycosylation site open. It is unknown whether the opening and closing of the glycosylation site by the 'lid' NAG molecules, could be related to the opening and closing of the active center of the enzyme upon substrate binding and product release.

Download full-text PDF

Source
http://dx.doi.org/10.18388/abp.2015_1065DOI Listing

Publication Analysis

Top Keywords

glycosylation site
12
nag molecules
8
closing glycosylation
8
opening closing
8
crystal molecular
4
molecular structure
4
structure hexagonal
4
hexagonal form
4
form lipase
4
lipase candida
4

Similar Publications

Triggered by the urgent need to tackle the global crisis of multidrug-resistant bacterial infections, in this work, we present a way to overcome chloramphenicol resistance by introducing modifications based on the glycosylation of its hydroxyl groups. The synthesized derivatives demonstrate complete resistance to the action of recombinant chloramphenicol acetyltransferase (CAT) from Escherichia coli and efficacy against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli ESBL, and Pseudomonas aeruginosa ATCC 27853. Glycosylation gives chloramphenicol an additional advantage - the stable glycosidic form is less toxic to human dermal fibroblasts and has significantly better water solubility than non-glycosylated chloramphenicol.

View Article and Find Full Text PDF

Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.

View Article and Find Full Text PDF

Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.

View Article and Find Full Text PDF

Bisecting GlcNAc modification of vesicular GAS6 regulates CAFs activation and breast cancer metastasis.

Cell Commun Signal

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, P. R. China.

Background: Cancer-associated fibroblasts (CAFs) are a pivotal component of the tumor microenvironment (TME), playing key roles in tumor initiation, metastasis, and chemoresistance. While glycosylation is known to regulate various cellular processes, its impact on CAFs activation remains insufficiently explored.

Methods: We assessed the correlation between bisecting GlcNAc levels and CAFs markers (α-SMA, PDGFRA, PDGFRB) in breast cancer tissues.

View Article and Find Full Text PDF

The molecular basis of Human FN3K mediated phosphorylation of glycated substrates.

Nat Commun

January 2025

Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724, USA.

Glycation, a non-enzymatic post-translational modification occurring on proteins, can be actively reversed via site-specific phosphorylation of the fructose-lysine moiety by FN3K kinase, to impact the cellular function of the target protein. A regulatory axis between FN3K and glycated protein targets has been associated with conditions like diabetes and cancer. However, the molecular basis of this relationship has not been explored so far.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!