Critical role of RAGE and HMGB1 in inflammatory heart disease.

Proc Natl Acad Sci U S A

Department of Internal Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany

Published: January 2016

Autoimmune response to cardiac troponin I (TnI) induces inflammation and fibrosis in the myocardium. High-mobility group box 1 (HMGB1) is a multifunctional protein that exerts proinflammatory activity by mainly binding to receptor for advanced glycation end products (RAGE). The involvement of the HMGB1-RAGE axis in the pathogenesis of inflammatory cardiomyopathy is yet not fully understood. Using the well-established model of TnI-induced experimental autoimmune myocarditis (EAM), we demonstrated that both local and systemic HMGB1 protein expression was elevated in wild-type (wt) mice after TnI immunization. Additionally, pharmacological inhibition of HMGB1 using glycyrrhizin or anti-HMGB1 antibody reduced inflammation in hearts of TnI-immunized wt mice. Furthermore, RAGE knockout (RAGE-ko) mice immunized with TnI showed no structural or physiological signs of cardiac impairment. Moreover, cardiac overexpression of HMGB1 using adeno-associated virus (AAV) vectors induced inflammation in the hearts of both wt and RAGE-ko mice. Finally, patients with myocarditis displayed increased local and systemic HMGB1 and soluble RAGE (sRAGE) expression. Together, our study highlights that HMGB1 and its main receptor, RAGE, appear to be crucial factors in the pathogenesis of TnI-induced EAM, because inhibition of HMGB1 and ablation of RAGE suppressed inflammation in the heart. Moreover, the proinflammatory effect of HMGB1 is not necessarily dependent on RAGE only. Other receptors of HMGB1 such as Toll-like receptors (TLRs) may also be involved in disease pathogenesis. These findings could be confirmed by the clinical relevance of HMGB1 and sRAGE. Therefore, blockage of one of these molecules might represent a novel therapeutic strategy in the treatment of autoimmune myocarditis and inflammatory cardiomyopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720305PMC
http://dx.doi.org/10.1073/pnas.1522288113DOI Listing

Publication Analysis

Top Keywords

hmgb1
11
inflammatory cardiomyopathy
8
autoimmune myocarditis
8
local systemic
8
systemic hmgb1
8
inhibition hmgb1
8
inflammation hearts
8
rage-ko mice
8
rage
7
critical role
4

Similar Publications

The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction.

View Article and Find Full Text PDF

Background: Chronic rhinosinusitis (CRS) is a global health issue, with some patients experiencing anxiety and depression-like symptoms. This study investigates the role of HMGB1 in anxiety and depression-like behaviors associated with the microglial Notch1/Hes-1 pathway in CRS mice.

Methods: A CRS mouse model was developed, and behavioral assessments were conducted to evaluate anxiety and depression-like behaviors.

View Article and Find Full Text PDF

HMGB1 induces unexplained recurrent spontaneous abortion by mediating decidual macrophage autophagy.

Int Immunopharmacol

January 2025

Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China; Innovation Research Institute of Engineering Medicine and Medical Equipment, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China. Electronic address:

Background: The overexpression of HMGB1 at the maternal-fetal interface (MFI) is recognized as a significant factor in Unexplained Recurrent Spontaneous Abortion (URSA). This study aimed to investigate autophagy in the decidual tissues of URSA patients and to explore the relationship between HMGB1 and macrophage autophagy at the MFI in URSA.

Methods: Human decidual tissues were collected from 40 patients diagnosed with URSA and from 60 women undergoing active termination of pregnancy.

View Article and Find Full Text PDF

CD4+ T helper 2 cell-macrophage crosstalk induces IL-24-mediated breast cancer suppression.

JCI Insight

January 2025

Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

CD4+ T cells contribute to antitumor immunity and are implicated in the efficacy of cancer immunotherapies. In particular, CD4+ T helper 2 (Th2) cells were recently found to block spontaneous breast carcinogenesis. However, the antitumor potential of Th2 cells in targeting established breast cancer remains uncertain.

View Article and Find Full Text PDF

Currently, diabetic nephropathy (DN) stands as the predominant global cause of endstage renal disease. Many scientists believe that diabetes will eventually spread to pandemic levels due to the rising prevalence of the disease. While the primary factor leading to diabetic nephropathy is vascular dysfunction induced by hyperglycemia, several other pathological elements, such as fibrosis, inflammation, and oxidative stress, also contribute to the progression of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!