Actin is one of the most conserved eukaryotic proteins. It is thought to have multiple essential cellular roles and to function primarily or exclusively as filaments ("F-actin"). Chlamydomonas has been an enigma, because a null mutation (ida5-1) in its single gene for conventional actin does not affect growth. A highly divergent actin gene, NAP1, is upregulated in ida5-1 cells, but it has been unclear whether NAP1 can form filaments or provide actin function. Here, we used the actin-depolymerizing drug latrunculin B (LatB), the F-actin-specific probe Lifeact-Venus, and genetic and molecular methods to resolve these issues. LatB-treated wild-type cells continue to proliferate; they initially lose Lifeact-stained structures but recover them concomitant with upregulation of NAP1. Thirty-nine LatB-sensitive mutants fell into four genes (NAP1 and LAT1-LAT3) in which we identified the causative mutations using a novel combinatorial pool-sequencing strategy. LAT1-LAT3 are required for NAP1 upregulation upon LatB treatment, and ectopic expression of NAP1 largely rescues the LatB sensitivity of the lat1-lat3 mutants, suggesting that the LAT gene products comprise a regulatory hierarchy with NAP1 expression as the major functional output. Selection of LatB-resistant revertants of a nap1 mutant yielded dominant IDA5 mutations that presumably render F-IDA5 resistant to LatB, and nap1 and lat mutations are synthetically lethal with ida5-1 in the absence of LatB. We conclude that both IDA5 and the divergent NAP1 can form filaments and redundantly provide essential F-actin functions and that a novel surveillance system, probably responding to a loss of F-actin, triggers NAP1 expression and perhaps other compensatory responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788133 | PMC |
http://dx.doi.org/10.1534/genetics.115.184663 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40 Street, 20-618 Lublin, Poland.
In recent years, global climate change has caused worldwide trends in science and industry toward a focus on the development of modern technologies with reduced environmental impact, including reduced CO emissions into the atmosphere. The technology for producing asphalt mixtures (AM) at lower temperatures (WMA-warm asphalt mix) using zeolite materials for the bitumen foaming process fits perfectly into these trends. Therefore, towards the development of this technology, the research presented in this paper presents the modification process of zeolite NaP1 from fly ash with silanes of different chemical structures (TEOS, MPTS, TESPT) and their application in the foaming process of bitumen modified with polymers (PMB 45/80-55).
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Powstancow Warszawy 12 Avenue, 35-959 Rzeszow, Poland.
This paper presents the properties of an SMA LA (stone matrix asphalt Lärmarmer) mixture based on the polymer-modified binder PMB 45/80-55, formed by the addition of zeolites (synthetic zeolite type Na-P1 and natural zeolite-clinoptilolite). The compositions of the SMA 11, SMA 8 LA and SMA 11 LA mixtures based on modified bitumen with PMB 45/80-55 (reference mixture) or PMB 45/80-55 with Na-P1 or clinoptilolite were determined. Their resistance to permanent deformation, water sensitivity, water permeability and susceptibility to changes in texture and skid resistance during the period of use were verified.
View Article and Find Full Text PDFMolecules
November 2024
Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini, 66100 Chieti, Italy.
This work deals with the synthesis of Na-P1 (GIS) zeolite using rice husk as the starting material, instead of the more expensive chemicals currently used in the industry (i.e., Na aluminates and Na silicates).
View Article and Find Full Text PDFInsect Biochem Mol Biol
December 2024
Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China; Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China. Electronic address:
Spermatogenesis is a key process for the sexual reproduction species. In lepidopteran insects, spermatogenesis produces two different types of sperms, in which eupyrene sperm carry genomic DNA and fertilize eggs, whereas apyrene sperm are necessary for eupyrene sperm to enter eggs. However, functional genetic studies of spermatogenesis in Plutella xylostella remain a longstanding puzzle even though the phenomenon in lepidoptera has been widely documented more than a century.
View Article and Find Full Text PDFJ Cell Biol
January 2025
Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Core histones, synthesized and processed in the cytoplasm, must be chaperoned as they are transported into the nucleus for nucleosome assembly. The importin Kap114 transports H2A-H2B into the yeast nucleus, where RanGTP facilitates histone release. Kap114 and H2A-H2B also bind the histone chaperone Nap1, but how Nap1 and Kap114 cooperate in transport and nucleosome assembly remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!