Streptomyces venezuelae ATCC 10712 produces chloramphenicol in small amounts. To enhance chloramphenicol production, two genes, aroB and aroK, encoding rate-limiting enzymes of the shikimate pathway were overexpressed using the expression vector pIJ86 under the control of the strong constitutive ermE* promoter. The recombinant strains, S. venezuelae/pIJ86-aroB and S. venezuelae/pIJ86-aroK, produced 2.5- and 4.3-fold greater amounts respectively of chloramphenicol than wild type at early stationary phase of growth. High transcriptional levels of aroB and aroK genes were detected at the early exponential growth of both recombinant strains and consistent with the enhanced expression of pabB gene encoding an early enzyme in chloramphenicol biosynthesis. The results suggested that the increment of carbon flux was directed towards intermediates in the shikimate pathway required for the production of chorismic acid, and consequently resulted in the enhancement of chloramphenicol production. This work is the first report of a convenient genetic approach to manipulate primary metabolite genes in S. venezuelae in order to increase chloramphenicol production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-015-0640-yDOI Listing

Publication Analysis

Top Keywords

chloramphenicol production
16
arob arok
12
shikimate pathway
12
streptomyces venezuelae
8
venezuelae atcc
8
atcc 10712
8
arok genes
8
recombinant strains
8
chloramphenicol
6
production
5

Similar Publications

First report of strawberry root rot caused by in China.

Plant Dis

January 2025

Hebei Academy of Agricultural and Forestry Sciences, Plant Protection Institute, 437 Dongguan Street, Baoding, Hebei, China, 071000.

Strawberry () is an important economic crop in Hebei, China. In May 2023, root rot was observed in strawberry plantations (cultivar 'Benihoppe') in Shijiazhuang (37°57'23″N, 115°16'34″E), Hebei, China. The incidence of the disease reached up to 30% in the field.

View Article and Find Full Text PDF

Chicken meat is a major source of foodborne salmonellosis. In Japan, fluoroquinolones and third-generation cephalosporins are the first- and second-choice treatments for Salmonella gastroenteritis, respectively. We investigated the prevalence and antimicrobial resistance of Salmonella in 154 chicken meat products from Hokkaido (42), Tohoku (45), Kanto (5), and Kyushu (62), Japan.

View Article and Find Full Text PDF

One of the significant challenges facing modern medicine is the rising rate of antibiotic resistance, which impacts public health, animal health, and environmental preservation. Evaluating antibiotic resistance in wildlife and their environments is crucial, as it offers essential insights into the dynamics of resistance patterns and promotes strategies for monitoring, prevention, and intervention. and genera isolates were recovered from fecal samples of wild animals and environmental samples using media without antibiotic supplementation.

View Article and Find Full Text PDF

Introduction: Silver nanoparticles (AgNPs) are widely utilized for their exceptional antimicrobial properties, but concerns persist regarding their environmental impacts, particularly in soil and water ecosystems. This study compared the effects of chemically and biologically synthesized AgNPs and ionic silver on bacterial communities commonly present in soil and the proliferation of antibiotic resistance in the soil ecosystem.

Results And Discussion: Biologically synthesized AgNPs exhibited the strongest antimicrobial activity, significantly reducing bacterial populations within a day, and demonstrated minimal impacts on the development of antibiotic resistance in long-term.

View Article and Find Full Text PDF

Recently, the extensive use of antibiotics has unavoidably resulted in the discharge of significant quantities of these drugs into the environment, causing contamination and fostering antibiotic resistance. Among various approaches employed to tackle this problem, heterogeneous photocatalysis has emerged as a technique for antibiotic degradation. This study explores the potential of CeO as a photocatalyst for the degradation of chloramphenicol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!