It has been proposed that diet-induced obesity at thermoneutrality (TN; 29°C) is reduced by a UCP1-dependent thermogenesis; however, it has not been shown how UCP1-dependent thermogenesis can be activated in the absence of sympathetic activity. A recent study provides such a mechanism by showing that dietary bile acids (BAs) suppress obesity in mice fed a high-fat diet (HFD) by a mechanism dependent on type 2 deiodinase (DIO2); however, neither a role for UCP1 nor the influence of sympathetic activity was properly assessed. To test whether the effects of BAs on adiposity are independent of Ucp1 and cold-activated thermogenesis, obesity phenotypes were determined in C57BL6/J.(+)/(+) (WT) and C57BL6/J.Ucp1.(-)/(-) mice (Ucp1-KO) housed at TN and fed a HFD with or without 0.5% (wt/wt) cholic acid (CA) for 9 wk. CA in a HFD reduced adiposity and hepatic lipogenesis and improved glucose tolerance in WT but not in Ucp1-KO mice and was accompanied by increases in food intake and energy expenditure (EE). In iBAT, CA increased Ucp1 mRNA and protein levels 1.5- and twofold, respectively, and increased DIO2 and TGR5 protein levels in WT mice. Despite enhanced Dio2 expression in Ucp1-KO and Ucp1-KO-CA treated mice, this did not enhance the ability of BAs to reduce obesity. By comparing the effects of BAs on WT and Ucp1-KO mice at TN, our study showed that BAs suppress diet-induced obesity by increasing EE through a mechanism dependent on Ucp1 expression, which is likely independent of adrenergic signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773649 | PMC |
http://dx.doi.org/10.1152/ajpendo.00485.2015 | DOI Listing |
Diabetes Metab Syndr Obes
December 2024
Department of Gastroenterology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, People's Republic of China.
Objective: This study aims to investigate the alterations in serum bile acid profiles among individuals with fatty liver (including non-alcoholic fatty liver (NAFL) and alcoholic fatty liver (AFL) and evaluate their clinical significance when combined with liver enzyme levels.
Methods: A cohort of 110 individuals with fatty liver (including non-alcoholic fatty liver 58 individuals and alcoholic fatty liver 52 individuals) was selected from the Department of Gastroenterology at Wenzhou People's Hospital between January 2021 and December 2022, while a control group of 66 healthy individuals was recruited from the hospital's health examination center during the same period. Clinical data and blood samples were collected from all participants.
Liver Int
January 2025
Liver Center, Digestive Diseases Section, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Background & Aims: Approximately 40% of patients with Primary Biliary Cholangitis (PBC) show incomplete response to ursodeoxycholic acid, thus needing second-line treatment to prevent disease progression. As no head-to-head comparison study is available, we used a network meta-analysis (NMA) to compare efficacy and safety of available second-line therapies.
Methods: We performed a systematic literature review including randomised, placebo-controlled trials of patients with PBC and incomplete response, or intolerance, to ursodeoxycholic acid, and compared relative risks (RRs) for primary (biochemical response at 52-week) and secondary outcomes [incidence of new-onset pruritus and serious adverse events (SAEs)].
Front Microbiol
December 2024
Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, China.
Intramuscular fat (IMF) is a key indicator of chicken meat quality and emerging studies have indicated that the gut microbiome plays a key role in animal fat deposition. However, the potential metabolic mechanism of gut microbiota affecting chicken IMF is still unclear. Fifty-one broiler chickens were collected to identify key cecal bacteria and serum metabolites related to chicken IMF and to explore possible metabolic mechanisms.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China.
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease caused by insulin resistance (IR) and insufficient insulin secretion. Its characteristic pathophysiological processes involve the interaction of multiple mechanisms. In recent years, globally, the prevalence of T2DM has shown a sharp rise due to profound changes in socio-economic structure, the persistent influence of environmental factors, and the complex role of genetic background.
View Article and Find Full Text PDFClin Nutr
December 2024
Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China. Electronic address:
Background And Aims: Combining probiotics and prebiotics in synbiotics may present a synergistic approach to improve type 2 diabetes mellitus (T2DM); however, further evidence is required to establish the comparative efficacy of synbiotics versus probiotics. This study aimed to evaluate the effects of Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup) and a synbiotic mixture of MN-Gup and galactooligosaccharide (MN-Gup-GOS) on glycemic control in T2DM patients and explore possible mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!