Background: Acute appendicitis (AA) (OMIM: 107700) is an inflammatory disease which is characterized by appendiceal inflammation. Genetic and environmental factors contribute to the development of AA. Especially, multiple genetic factors appear to be promising in the explanation of etiopathogenesis of AA. IL-6 (Interleukin-6) is an inflammatory cytokine and IL-6 receptor (IL-6R) plays an important role in the immune response. IL-6 (-572G/C rs1800796) and IL-6R (1:G.154448302 T > C rs7529229) gene polymorphisms may have an impact on cytokine production, immune response and these gene polymorphisms may be used as inflammatory markers in the diagnosis of appendicitis.

Method: A total of 75 children with appendicitis, and 75 healthy children were included in the study. DNA extracts were obtained from peripheral lymphocytes. Single-nucleotide polymorphisms (SNPs) were analysed using an automated SYBR® Green RT-PCR system in pediatric patients with appendicitis (n = 75) and healthy controls (n = 75).

Results: The allele and genotype frequencies for IL-6 rs1800796 and IL-6R rs7529229 polymorphisms were not different between the study groups (p > 0.05). Any statistically significant differences as for age, sex and other laboratory factors were not detected between the patients with appendicitis for genotype-allele frequencies (p > 0.05). Still in analyses performed to determine correlations among age, and gender of the patients, routine laboratory parameters and allele-genotype frequencies, a statistically significant intergroup difference was not detected. Genotype and allele frequencies were consistent with Hardy-Weinberg equilibrium (HWE) in all groups.

Discussion: This is the first study to investigate the effects of functional two polymorphisms on IL-6 and IL-6R genes in a pediatric patient group with AA risk. With this study we investigated the contribution of IL-6 (-572G/C rs1800796) and IL-6R (1:G.154448302 T > C rs7529229) polymorphisms on pathogenesis, and severity of AA in pediatric patients with AA: These results will guide further genetic researches to be performed on the role of IL-6 and IL-6R in AA.

Conclusions: Given the putative biological importance of this SNPs, these emerging data can provide a new foundation to stimulate future debate and genetic investigations of AA, focusing on new molecular mechanisms such as other IL gene polymorphisms, particularly in accessible peripheral tissues for novel molecular diagnostics for appendicitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696224PMC
http://dx.doi.org/10.1186/s13052-015-0206-7DOI Listing

Publication Analysis

Top Keywords

il-6 il-6r
12
acute appendicitis
12
pediatric patients
12
rs1800796 il-6r
12
gene polymorphisms
12
polymorphisms
8
polymorphisms il-6
8
genes pediatric
8
immune response
8
il-6 -572g/c
8

Similar Publications

Introduction: The low incidence of intradialytic hypotension (IDH) in high-volume (HV) hemodiafiltration (HDF) may help in maintaining gut perfusion during treatment. Preservation of gut endothelial integrity would limit or prevent bacterial translocation and subsequent systemic inflammation, which may contribute to the low mortality rate in HV-HDF.

Methods: Forty patients were cross-over randomized to standard (hemodialysis [HD]) (S-HD), cool HD (C-HD), and HDF (low-volume [LV] and HV, convection volume (CV) of 15 L and ≥ 23 L per session, respectively), each for 2 weeks.

View Article and Find Full Text PDF

IL-6 Does Not Influence the Expression of and Other Mg-Homeostatic Factors.

Int J Mol Sci

December 2024

Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, 03601 Martin, Slovakia.

Together with chronic inflammation, disturbed magnesium homeostasis is a factor accompanying chronic disease which thus contributes to a reduced quality of human life. In this study, our objective was to examine the possible IL-6-mediated chronic inflammation-dependent regulation of nine magnesiotropic genes encoding for constituents of magnesium homeostasis of the cell. We used three cell lines (HepG2, U-266, and PANC-1), all characterized by high expression of the gene and the presence of a membrane form of IL-6R capable of responding to human IL-6.

View Article and Find Full Text PDF

Breast cancer stem cells (CSCs) are resistant to most cancer therapeutics and contribute to tumor recurrence and metastasis. Two breast CSC-promoting transcription factors, truncated glioma-associated oncogene homolog 1 (tGLI1) and signal transducer and activator of transcription 3 (STAT3), have been reported to be frequently co-expressed in HER2-enriched breast cancer and triple-negative breast cancer (TNBC), undergo protein-protein interactions for gene regulation and activation, and functionally cooperate to promote breast CSCs. STAT3 can be activated by activated interleukin-6 receptor/glycoprotein-130 (IL-6R/GP130).

View Article and Find Full Text PDF

IL-6R inhibitors are widely used in many inflammation-related diseases, especially so during the COVID-19 pandemic. However, their relationship with gastrointestinal perforations (GIPs) has been reported more and more. We comprehensively analyzed IL-6R inhibitors in association with GIPs from the United States FDA Adverse Event Reporting System (FAERS).

View Article and Find Full Text PDF

Background: Paraneoplastic inflammatory syndrome (PIS) with fever and biological inflammation is a rare but severe condition often caused by the systemic production of interleukin 6 (IL-6) by cancer cells. We report on the efficacy of tocilizumab, an anti-IL-6 receptor antibody, in 35 patients with severe PIS.

Patients And Methods: All 35 patients with solid cancers (sarcomas, lung carcinoma, and breast carcinoma) diagnosed with a PIS from 2019 to 2024 treated with tocilizumab were analyzed in this single-center study (health authorities' approval R201-004-478).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!