Does soaking temperature during controlled slow freezing of pre-pubertal mouse testes influence course of in vitro spermatogenesis?

Cell Tissue Res

EA 4308 "Gametogenesis and Gamete Quality", Reproductive Biology Laboratory - CECOS, Rouen University Hospital, Institute for Biomedical Research, University of Rouen, 76031, Rouen Cedex, France.

Published: June 2016

The banking of testicular tissue before highly gonadotoxic treatment is a prerequisite for the preservation of fertility in pre-pubertal boys not yet producing sperm. The aim of the current study is to evaluate the impact of a soaking temperature performed at -7 °C, -8 °C or -9 °C on the ability of frozen-thawed mouse spermatogonial stem cells (SSCs) to generate haploid germ cells after in vitro maturation. Testes of 6.5-day-old post-partum CD-1 mice were cryopreserved by using a controlled slow freezing protocol with soaking at -7 °C, -8 °C or -9 °C. Frozen-thawed pre-pubertal testicular tissues were cultured in vitro on agarose gel for 30 days. Histological evaluations were performed and flagellated late spermatids were counted after mechanical dissection of the cultured tissues. The differentiation of frozen SSCs into elongated spermatids was more efficient after treatment at -9 °C than at -7 °C and -8 °C. After dissection, flagellated late spermatids were observed by using Shorr staining. The number of flagellated late spermatids was significantly decreased after slow freezing when compared with a fresh tissue control. Therefore, the soaking temperature during slow freezing of pre-pubertal mouse testicular tissue might positively influence the course of in vitro spermatogenesis. Our slow freezing protocol with a soaking temperature at -9 °C was the optimal condition in terms of the achievement of in vitro spermatogenesis with a higher production of elongated spermatids, although the effectiveness of the maturation process was reduced compared with the fresh tissue control.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-015-2341-2DOI Listing

Publication Analysis

Top Keywords

slow freezing
20
soaking temperature
16
-7 °c -8 °c
12
flagellated late
12
late spermatids
12
controlled slow
8
freezing pre-pubertal
8
pre-pubertal mouse
8
influence course
8
course vitro
8

Similar Publications

Evaluation of a Simple Antibiotic-Free Cryopreservation Protocol for Drone Semen.

Insects

January 2025

Fundamental and Applied Research for Animals and Health Research Unit (FARAH), Comparative Veterinary Medicine, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium.

The increasing reliance of modern agriculture on honey bee () pollination has driven efforts to preserve and enhance bee populations. The cryopreservation of drone semen presents a promising solution for preserving genetic diversity and supporting breeding programs without live animal transport risks. This study aimed to evaluate a one-step dilution antibiotic-free drone semen slow-freezing protocol under field conditions with in vitro and in vivo parameters.

View Article and Find Full Text PDF

Carboxymethyl freeze-thawed tapioca starch moderates oil deterioration in deep-frying cycles of battered sausages.

Food Chem

January 2025

College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China. Electronic address:

This study was aimed at investigating the effect of carboxymethyl freeze-thawed tapioca starch (CM-FTS) in the batter wrapped ham sausages (CM-FTS-BHS) on the oil qualities following deep-frying cycles compared with tapioca starch, freeze-thawed tapioca starch, and carboxymethyl tapioca starch. As the deep-frying cycles increased, the degree of all oil deterioration continued to increase. Analysis of oxidation, acid values, carbonyl values, conjugated diene/triene content and low-field magnetic resonance revealed that adding CM-FTS to batter was more conducive to reducing the formation of oil deterioration products than other samples.

View Article and Find Full Text PDF

Epididymal bull sperm selection by Percoll® density-gradient centrifugation prior to conventional or ultra-rapid freezing enhances post-thaw sperm quality.

Cryobiology

January 2025

Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador. Electronic address:

This study evaluated the effectiveness of Percoll® density gradient centrifugation (Percoll-DGC) for selecting bull epididymal sperm prior to conventional slow (CS) or ultra-rapid (UR) freezing and its effects on sperm quality. Fifteen pooled samples from 30 epididymides (2 different samples/pool) of 15 bulls were split into two aliquots assigned to either CS or UR freezing. Samples were either selected using Percoll-DGC (40/80 %) or left non-selected (control), resulting in four pre-freezing treatments: Percoll-CS, Control-CS, Percoll-UR, and Control-UR.

View Article and Find Full Text PDF

Here, we report a simple method to prepare near-IR (NIR) surface-enhanced Raman scattering (SERS) substrates by quickly freezing a citrate-capped Au nanoparticle (AuNP) solution in liquid nitrogen, followed by thawing it at room temperature. This process aggregates AuNPs in a controlled manner by forming ice crystals with smaller grain sizes when compared to a slow freezing process. The resulting smaller AuNP aggregates remain suspended in solution long enough to conduct high-throughput chemical analysis in a microwell plate using the NIR SERS spectroscopy.

View Article and Find Full Text PDF

Testicular cryopreservation has been highlighted as a promising alternative for preserving male fertility and can be applied to restore spermatogenesis in prepubertal individuals or cancer patients, preserve biologically valuable genotypes, and in studies on reproductive physiology or toxicity of various substances. This review presents an analysis of the technical aspects and applications of testicular cryopreservation, examining the contributions of important studies in this area and discussing the different factors that can impact the efficiency of the technique. Testicular fragments can be obtained from living or dead individuals, at any age and reproductive stage, through orchiectomy or biopsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!