In the military population, there is high comorbidity between mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) due to the inherent risk of psychological trauma associated with combat. These disorders present with long-term neurological dysfunction and remain difficult to diagnose due to their comorbidity and overlapping clinical presentation. Therefore, we performed cross-sectional analysis of blood samples from demographically matched soldiers (total, n = 120) with mTBI, PTSD, and mTBI+PTSD and those who were considered cognitively and psychologically normal. Soldiers were genotyped for apolipoprotein E (APOE) ɛ4, and phospholipids (PL) were examined using liquid chromatography/mass spectrometry analysis. We observed significantly lower levels of several major PL classes in TBI, PTSD, and TBI+PTSD, compared with controls. PTSD severity analysis revealed that significant PL decreases were primarily restricted to the moderate-to-severe PTSD group. An examination of the degree of unsaturation showed that monounsaturated fatty acid-containing phosphatidylcholine (PC) and phosphatidylinositol (PI) species were lower in the TBI and TBI+PTSD groups. However, these PLs were unaltered among PTSD subjects, compared with controls. Similarly, ether PC (ePC) levels were lower in PTSD and TBI+PTSD subjects, relative to controls. Ratios of arachidonic acid (AA) to docosahexaenoic acid (DHA)-containing species were significantly decreased within PC and phosphatidylethanolamine (PE) classes. APOE ɛ4 (+) subjects exhibited higher PL levels than their APOE ɛ4 (-) counterparts within the same diagnostic groups. These findings suggest that PL profiles, together with APOE genotyping, could potentially aid to differentiate diagnosis of mTBI and PTSD and warrant further validation. In conclusion, PL profiling may facilitate clinical diagnosis of mTBI and PTSD currently hindered by comorbid pathology and overlapping symptomology of these two conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2015.4061DOI Listing

Publication Analysis

Top Keywords

mtbi ptsd
12
apoe ɛ4
12
ptsd
9
military population
8
mild traumatic
8
traumatic brain
8
brain injury
8
post-traumatic stress
8
stress disorder
8
ptsd tbi+ptsd
8

Similar Publications

Mild traumatic brain injury (mTBI) can lead to lasting adverse outcomes, including post-traumatic stress disorder (PTSD) or post-traumatic stress symptoms (PTSS). This study examined whether PTSD and PTSS can occur even after mTBI and tracked the evolution of PTSD in the long term. A total of 85 youth post-mTBI (median age: 10.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) and depression are common after mild traumatic brain injury (mTBI), but their biological drivers are uncertain. We therefore explored whether polygenic risk scores (PRS) derived for PTSD and major depressive disorder (MDD) are associated with the development of cognate TBI-related phenotypes.

Methods: Meta-analyses were conducted using data from two multicenter, prospective observational cohort studies of patients with mTBI: the CENTER-TBI study (ClinicalTrials.

View Article and Find Full Text PDF

Association of Blood-Based Biomarkers and 6-Month Patient-Reported Outcomes in Patients With Mild TBI: A CENTER-TBI Analysis.

Neurology

January 2025

From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium.

Background And Objectives: There is seemingly contradictory evidence concerning relationships between day-of-injury biomarkers and outcomes after mild traumatic brain injury (mTBI). To address this issue, we examined the association between a panel of biomarkers and multidimensional TBI outcomes.

Methods: Participants with mTBI (Glasgow coma scores [GCSs] 13-15) were selected from Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury, a European observational study recruiting patients with TBI with indication for brain CT and presentation within 24 hours.

View Article and Find Full Text PDF
Article Synopsis
  • * This clinical trial aims to compare quetiapine monotherapy against treatment as usual (TAU) to see if it offers better recovery from postconcussive syndrome and PTSD symptoms in veterans undergoing rehabilitation for mTBI.
  • * The study will enroll 146 veterans over 12 weeks, focusing on outcomes like symptom reduction, functional disability, and quality of life, with the goal of determining if quetiapine can enhance recovery and improve overall well-being.
View Article and Find Full Text PDF

Objective: Veterans with a history of blast-related mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) may be at risk for greater cognitive concerns and worse functional outcomes compared to those with either condition in isolation. However, traditional neuropsychological assessment approaches have yielded equivocal results in these populations. The present study examined an alternative method for detecting subtle cognitive inefficiencies: neurocognitive intraindividual variability (IIV), a measure of within-person performance consistency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!