Background: Environmental exposures to chemicals have been shown to influence gastrointestinal function, yet little is known regarding whether chemical mixtures may be involved in the development of a subclinical enteric dysfunction found in infants and children born into poor hygiene and sanitation. Advances in gastrointestinal and immunotoxicology fields merit inclusion in complex discussions of environmental enteric dysfunction (EED) that severely affects children in developing countries.
Objective: We aimed to highlight exposome approaches for investigating the potential influence of environmental chemical exposures on EED development, including a role for toxicant modulation of gut immune system and microbiome function.
Discussion: A major focus on fecal-oral contamination in impoverished living conditions already exists for EED, and should now expand to include environmental chemicals such as pesticides and heavy metals that may be anthropogenic or dietary or from microbial sources. A comprehensive characterization of environmental chemical exposures prenatally and occurring in infants and young children will enhance our knowledge of any associated risks for EED and stunting.
Conclusions: Integrating EED, chemical exposure, and stunting at various ages during childhood will enhance our apparent limited view when evaluating EED. Etiology and intervention studies should evaluate the suite of environmental chemical exposures as candidates in the composite of EED biomarkers.
Citation: Mapesa JO, Maxwell AL, Ryan EP. 2016. An exposome perspective on environmental enteric dysfunction. Environ Health Perspect 124:1121-1126; http://dx.doi.org/10.1289/ehp.1510459.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977058 | PMC |
http://dx.doi.org/10.1289/ehp.1510459 | DOI Listing |
Gastrointestinal (GI) motility is regulated in a large part by the cells of the enteric nervous system (ENS), suggesting that ENS dysfunctions either associate with, or drive GI dysmotility in patients. However, except for select diseases such as Hirschsprung's Disease or Achalasia that show a significant loss of all neurons or a subset of neurons, our understanding of human ENS histopathology is extremely limited. Recent endoscopic advances allow biopsying patient's full thickness gut tissues, which makes capturing ENS tissues simpler than biopsying other neuronal tissues, such as the brain.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Department of Surgery, University of Virginia, Charlottesville, VA, United States.
Introduction: Dysfunction of the enteric nervous system (ENS) is linked to a myriad of gastrointestinal (GI) disorders. Piezo1 is a mechanosensitive ion channel found throughout the GI tract, but its role in the ENS is largely unknown. We hypothesize that Piezo1 plays an important role in the growth and development of the ENS.
View Article and Find Full Text PDFCureus
December 2024
General Surgery, King's College Hospital London, Dubai Hills, Dubai, ARE.
Idiopathic megacolon and megarectum are rare clinical conditions characterized by irreversible dilation of the colon and rectum without an identifiable organic cause. The underlying pathophysiology remains poorly understood, though hypotheses suggest abnormalities in the enteric nervous system or smooth muscle dysfunction. These conditions present significant diagnostic and therapeutic challenges, especially in cases refractory to conservative treatment.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
Traumatic brain injury (TBI) is a prevalent disease that poses a significant threat to global public health. Digestive dysfunction, as a common complication, is of particular importance to understand its pathogenesis, diagnostic criteria, and relevant treatment strategies. TBI can affect digestive function through inflammatory immune responses, the enteric nervous system, and hormonal levels.
View Article and Find Full Text PDFiScience
December 2024
Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China.
The hypertrophic mesenteric adipose tissue (htMAT) of Crohn disease (CD) participates in inflammation through the expression of adipokines, but the exact mechanism of this action in the intestine is unknown. Here, we analyzed the expression of secreted frizzled-related protein 5 (SFRP5), an adipokine with cytoprotective effects, in htMAT and its role in CD. The results of this study revealed that the level of SFPR5 increased in the diseased MAT (htMAT) of CD patients and aggregated among intestinal epithelial cells in the diseased intestine and that it could ameliorate intestinal barrier dysfunction in tumor necrosis factor alpha (TNF-α)-stimulated colonic organoids and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced mice at least in part through the inhibition of Wnt5a-mediated apoptosis in epithelial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!