Stroke is an ischemic disease caused by clotted vessel-induced cell damage. It is characterized by high morbidity and mortality and is typically treated with a tissue plasminogen activator (tPA). However, this therapy is limited by temporal constraints. Recently, several studies have focused on cell therapy as an alternative treatment. Most researches have used fixed donor cell administration, and hence, the effect of donor-dependent cell administration is unknown. In this study, we administered 3 types of donor-derived human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) in the ischemic boundary zone of the ischemic stroke rat model. We then performed functional and pathological characterization using rotarod, the limb placement test, and immunofluorescent staining. We observed a significant decrease in neuron number, and notable stroke-like motor dysfunction, as assessed by the rotarod test (~40% decrease in time) and the limb placement test (4.5 point increase) in control rats with ischemic stroke. The neurobehavioral performance of the rats with ischemic stroke that were treated with hUCB-MSCs was significantly better than that of rats in the vehicle-injected control group. Regardless of which donor cells were used, hUCB-MSC transplantation resulted in an accumulation of neuronal progenitor cells, and angiogenic and tissue repair factors in the ischemic boundary zone. The neurogenic and angiogenic profiles of the 3 types of hUCB-MSCs were very similar. Our results suggest that intraparenchymal administration of hUCB-MSCs results in significant therapeutic effects in the ischemic brain regardless of the type of donor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4688335PMC
http://dx.doi.org/10.5607/en.2015.24.4.358DOI Listing

Publication Analysis

Top Keywords

ischemic stroke
12
human umbilical
8
umbilical cord
8
mesenchymal stem
8
stem cells
8
cell administration
8
ischemic boundary
8
boundary zone
8
limb placement
8
placement test
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!