In order to quickly and simultaneously obtain the chemical profiles and control the quality of the root of Polygonum multiflorum Thumb. and its processed form, a rapid qualitative and quantitative method, using ultra-high-performance liquid chromatography coupled with electrospray ionization-linear ion trap-Orbitrap hybrid mass spectrometry (UHPLC-LTQ-Orbitrap MS(n)) has been developed. The analysis was performed within 10 min on an AcQuity UPLC™ BEH C18 column with a gradient elution of 0.1% formic acid-acetonitrile at flow rate of 400 μL/min. According to the fragmentation mechanism and high resolution MS(n) data, a diagnostic ion searching strategy was used for rapid and tentative identification of main phenolic components and 23 compounds were simultaneously identified or tentatively characterized. The difference in chemical profiles between P. multiflorum and its processed preparation were observed by comparing the ions abundances of main constituents in the MS spectra and significant changes of eight metabolite biomarkers were detected in the P. multiflorum samples and their preparations. In addition, four of the representative phenols, namely gallic acid, trans-2,3,5,4'-tetra-hydroxystilbene-2-O-β-d-glucopyranoside, emodin and emodin-8-O-β-d-glucopyranoside were quantified by the validated UHPLC-MS/MS method. These phenols are considered to be major bioactive constituents in P. multiflorum, and are generally regarded as the index for quality assessment of this herb. The method was successfully used to quantify 10 batches of P. multiflorum and 10 batches of processed P. multiflorum. The results demonstrated that the method is simple, rapid, and suitable for the discrimination and quality control of this traditional Chinese herb.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272829PMC
http://dx.doi.org/10.3390/molecules21010040DOI Listing

Publication Analysis

Top Keywords

ultra-high-performance liquid
8
liquid chromatography
8
chromatography coupled
8
mass spectrometry
8
qualitative quantitative
8
polygonum multiflorum
8
multiflorum thumb
8
thumb processed
8
chemical profiles
8
multiflorum
7

Similar Publications

Development and Validation of a High-Throughput Quantification Method of Crown Procyanidins in Different Wines by UHPLC-Q-TOF.

Methods Protoc

January 2025

Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, F-33882 Villenave d'Ornon, France.

Procyanidins are widely distributed in plant-derived foods, and consist of flavanol oligomers and polymers. Recently, the crown procyanidin sub-family, characterised by a unique macrocyclic structure, has been identified in grapes and wine. This study reports the development and validation of a rapid and quantitative analytical method measuring crown procyanidin concentration in red and white wines using ultra-high-performance liquid chromatography (UHPLC) coupled with a Q-TOF mass spectrometer.

View Article and Find Full Text PDF

Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.

View Article and Find Full Text PDF

Four previously undescribed cyclic peptides, reniochpeptins A-D (1-4), were isolated from the marine sponge Reniochalina sp. Their structures were elucidated through comprehensive spectroscopic analyses and a modified advanced Marfey's method. This method utilized ultra-high-performance liquid chromatography coupled with tandem multiple reaction monitoring mass spectrometry, employing a CORTECS T column to achieve simultaneous separation of derivatized -Leu, -Ile, -allo-Ile, -Leu, -Ile, and -allo-Ile within 25 minutes in a single analytical run.

View Article and Find Full Text PDF

Targeted and untargeted urinary metabolomics of alkaptonuria patients using ultra high-performance liquid chromatography-tandem mass spectrometry.

J Pharm Biomed Anal

January 2025

Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany. Electronic address:

Alkaptonuria (AKU) is a rare autosomal-recessive disease which is characterized through black urine and ochronosis. It is caused by deficiency of the enzyme Homogentisate 1,2-dioxygenase in the Phenylalanine/Tyrosine degradation pathway which leads to the accumulation of Homogentisic acid (HGA). Urine was provided by AKU patients and healthy controls.

View Article and Find Full Text PDF

The continuous development and application of pesticides in agriculture require robust multiresidue detection methods to guarantee food safety. This study introduces a novel method for multiresidue determination of pesticides in eggplants using the QuEChERS procedure, incorporating a clean-up step using carbon nanotubes stabilized in chitosan sponge (CNT-CS) and ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) for analysis. Upon identifying the optimal extraction conditions, various sorbents were assessed for their efficacy in the dispersive solid-phase extraction (d-SPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!