Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720317PMC
http://dx.doi.org/10.1073/pnas.1519691113DOI Listing

Publication Analysis

Top Keywords

tasmanian devils
16
transmissible cancers
16
transmissible cancer
12
second transmissible
8
cancer
8
transmissible
8
cancer cells
8
dft1 dft2
8
devils
6
tasmanian
5

Similar Publications

Land use influences the faecal glucocorticoid metabolites of multiple species across trophic levels.

Conserv Physiol

January 2025

College of Science and Engineering, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.

Human landscape modification is amongst the greatest drivers of biodiversity loss. Measuring faecal glucocorticoid metabolites (FGM) in wildlife is of great value to measure the impact of human activities on local biodiversity because FGM offer a non-invasive way of measuring an animal's response to changes in its environment in the form of adrenocortical activity. Here, we measure the concentration of FGM in three native Australian mammal species belonging to different trophic levels: the Tasmanian devil () and the spotted-tailed quoll (), both carnivores, and an omnivore that is primarily an arboreal folivore, the brushtail possum (), and compare the FGM concentrations across three major land uses: agricultural, plantation and National Parks.

View Article and Find Full Text PDF

Background: Marsupials have a narrower range of forelimb morphological features than placental mammals. It is hypothesized that this is due to a constraint in the reproductive biology of marsupials. The constraint is that newborn marsupials must crawl into their mother's pouch.

View Article and Find Full Text PDF

Detection and annotation of unique regions in mammalian genomes.

G3 (Bethesda)

January 2025

Research Group Bioinformatics, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, Schleswig-Holstein 24306, Germany.

Article Synopsis
  • The paper identifies long unique genomic regions in mammals that are highly enriched with developmental genes, using a fast string matching method for detection.
  • It quantifies the method’s efficiency and accuracy, applying it to the genomes of 18 mammals and annotating unique regions of at least 10 kb.
  • The study highlights a significant anonymous unique region in the Tasmanian devil, containing an essential gene, suggesting that these unique regions should be prioritized in mammalian genome annotations.
View Article and Find Full Text PDF
Article Synopsis
  • Shifts in Tasmanian devil reproduction were observed after a deadly cancer outbreak, with females starting to breed at a younger age (one year old) as a response to population decline.
  • Over 18 years of data analysis, researchers found that the rates of precocial (early) breeding in females stabilized at around 50%, without further increase after the initial rise.
  • The study revealed no significant impact of body size on breeding success or evidence of inbreeding depression affecting reproductive outcomes for either younger or older females.
View Article and Find Full Text PDF

Emerging infectious diseases threaten natural populations, and data-driven modeling is critical for predicting population dynamics. Despite the importance of integrating ecology and evolution in models of host-pathogen dynamics, there are few wild populations for which long-term ecological datasets have been coupled with genome-scale data. Tasmanian devil (Sarcophilus harrisii) populations have declined range wide due to devil facial tumor disease (DFTD), a fatal transmissible cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!