FMRP-Mediated Axonal Delivery of miR-181d Regulates Axon Elongation by Locally Targeting Map1b and Calm1.

Cell Rep

State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China. Electronic address:

Published: December 2015

Subcellular targeting and local translation of mRNAs are critical for axon development. However, the precise local control of mRNA translation requires investigation. We report that the Fmr1-encoded protein, FMRP-mediated axonal delivery of miR-181d negatively regulates axon elongation by locally targeting the transcripts of MAP1B (Map1b) and calmodulin (Calm1) in primary sensory neurons. miR-181d affected the local synthesis of MAP1B and calmodulin in axons. FMRP was associated with miR-181d, Map1b, and Calm1. Both FMRP deficiency in Fmr1(I304N) mice and Fmr1 knockdown impeded the axonal delivery of miR-181d, Map1b, and Calm1 and reduced the protein levels of MAP1B and calmodulin in axons. Furthermore, nerve growth factor (NGF) induced Map1b and Calm1 release from FMRP and miR-181d-repressing granules, thereby promoting axon elongation. Both miR-181d overexpression and FMRP knockdown impaired NGF-induced axon elongation. Our study reveals a mechanism for the local regulation of translation by miR-181d and FMRP during axon development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2015.11.057DOI Listing

Publication Analysis

Top Keywords

axon elongation
16
map1b calm1
16
axonal delivery
12
delivery mir-181d
12
map1b calmodulin
12
fmrp-mediated axonal
8
regulates axon
8
elongation locally
8
locally targeting
8
map1b
8

Similar Publications

Engineered extracellular vesicles play an increasingly important role in the treatment of spinal cord injury. In order to prepare more effective engineered extracellular vesicles, we biologically modified M2 microglia. Angiopep-2 (Ang2) is an oligopeptide that can target the blood-brain barrier.

View Article and Find Full Text PDF

Accelerated rehabilitation following facial nerve injury presents unique clinical challenges. This study evaluates the therapeutic effects of concentrated growth factor (CGF) on facial nerve recovery in a rabbit model and on RSC96 Schwann cells. Characterization of the CGF membrane (CGFM) revealed a three-dimensional fibrin network with embedded platelets, and representative growth factors, including TGF-β1, PDGF-BB, IGF-1, bFGF, and VEGF, were detected.

View Article and Find Full Text PDF

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.

View Article and Find Full Text PDF

Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!