Layer II (LII) of the medial entorhinal cortex (MEC) comprises grid cells that support spatial navigation. The firing pattern of grid cells might be explained by attractor dynamics in a network, which requires either direct excitatory connectivity between phase-specific grid cells or indirect coupling via interneurons. However, knowledge regarding local networks that support in vivo activity is incomplete. Here we identified essential components of LII networks in the MEC. We distinguished four types of excitatory neurons that exhibit cell-type-specific local excitatory and inhibitory connectivity. Furthermore, we found that LII neurons contribute to the excitation of contralateral neurons in the corresponding layer. Finally, we demonstrated that the medial septum controls excitation in the MEC via two subpopulations of long-range GABAergic neurons that target distinct interneurons in LII, thereby disinhibiting local circuits. We thus identified local connections that could support attractor dynamics and external inputs that likely govern excitation in LII.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712190 | PMC |
http://dx.doi.org/10.1016/j.neuron.2015.11.029 | DOI Listing |
Cytotechnology
February 2025
Department of Pharmacology and Toxicology, College of Pharmacy, Al-Nahrain University, Baghdad, Iraq.
Angiogenesis is an intricate pathway that involves the formation of new blood capillaries from old, functioning ones. Improper angiogenesis is a feature of numerous maladies, including malignancy and autoimmune disorders. Indole-related derivatives are believed to interfere with the mitotic spindle, inhibiting the multiplication, and invasion of cancerous human cells.
View Article and Find Full Text PDFCytotechnology
February 2025
Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.
Mechanical and thermal cell damage can occur due to invasive procedures related to drilling, the insertion of dental implants, and periodontal treatments. Necrotic cells release the content of their cytoplasm and membrane fragments, thereby signaling the need for repair, which includes bone resorption by osteoclasts and inflammation. Here we screened lysates from human gingival fibroblasts, HSC2 and TR146 oral squamous carcinoma cell lines, as well as murine IDG-SW3 osteocytic and RAW264.
View Article and Find Full Text PDFIn Silico Pharmacol
January 2025
Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India.
Unlabelled: Globally, there is an increase in the prevalence of metabolic illnesses, including diabetes mellitus. However, current therapies for diabetes and other metabolic illnesses are not well understood. Pharmacological treatment of type 2 diabetes is challenging, moreover, the majority of antidiabetic medications are incompatible with individuals who have cardiac disease, renal illness, or liver damage.
View Article and Find Full Text PDFMuscle Nerve
January 2025
Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
Introduction: Motor recovery following nerve injury is dependent on time required for muscle reinnervation. This process is imperfect, however, and recovery is often incomplete. At the neuromuscular junction (NMJ), macrophage signaling aids muscle reinnervation.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China.
Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning mA RNA modification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!