The structure and composition of the eggshells of two commercial species (guinea fowl and greylag goose) have been studied. Thin sections and scanning electron microcopy show the similarity of the overall structure, but the relative thickness of the layers differs in these two taxa. Atomic force microscopy shows that the different layers are composed of rounded, heterogeneous granules, the diameter of which is between 50 and 100 nm, with a thin cortex. Infrared data and thermogravimetric analyses show that both eggshells are made of calcite, but differing on the quality and quantity when the organic component is considered. Chemical maps show that chemical element distribution is not uniform within a sample, and differs between the species, but with low magnesium content. Electron back scattered diffraction confirms the eggshells are calcite, but the microtexture strongly differs between the two species. Based on the chemical-structural differences, a species-specific biological control on the biomineralization is found, despite the rapid formation of an eggshell. Overall results indicate that to estimate the quality of eggshells, such as resistance to breakage, is not a straightforward process because of the high complexity of avian eggshell biomineralization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.zool.2015.11.002 | DOI Listing |
Animals (Basel)
December 2024
Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
This study evaluated the effects of kaempferol (KAE), and vitamin E (VE) on the performance, reproductive hormones, and the composition of the cecum and uterus microbiota in late-laying hens. A total of 192 49-week-old Jinghong No. 1 laying hens were randomly divided into four groups, with six replicates in each group and eight laying hens in each replicate, pre-reared for one week and formally tested for ten weeks.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Federal Institute of Education, Science, and Technology of Amazonas, Downtown Campus, Manaus, Amazonas, Brazil.
This study evaluated the effects of incorporating biological silage from tambaqui (Colossoma macropomum) by-products (BST) on the performance, hematological and plasma biochemical parameters, and egg quality (physical, proximate composition and sensory characteristics) of older commercial hens. The BST was prepared by ensiling tambaqui by-products with lactic acid bacteria, cassava trimmings, and preservatives, producing a nutrient-rich, high-protein feed ingredient. One hundred and twenty Hisex Brown hens (83 weeks old) were divided into five treatment groups, each receiving diets with 0, 1, 2, 3, or 4% BST.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Applied Chemistry and Engineering of Inorganic Compounds and the Environment, University Politehnica Timisoara, 2 Piata Victoriei, 300006 Timișoara, Romania.
Designing new engineered materials derived from waste is essential for effective environmental remediation and reducing anthropogenic pollution in our economy. This study introduces an innovative method for remediating metal-contaminated water, using two distinct waste types: one biowaste (eggshell) and one industrial waste (fly ash). We synthesized three novel, cost-effective nanoadsorbent types, including two new tertiary composites and two biopolymer-based composites (specifically k-carrageenan and chitosan), which targeted chromium removal from aqueous solutions.
View Article and Find Full Text PDFRadiat Environ Biophys
December 2024
Faculty of Radiological Technology, Rangsit University, Pathumthani, 12000, Thailand.
This study explores the development and efficacy of eggshell-derived particle composites with epoxy resin for enhanced radiation shielding applications. Eggshells, primarily composed of calcium carbonate, were processed into particles of three sizes: small, medium, and large. These particles were incorporated into epoxy resin at a 50% weight ratio and characterized using a Laser Particle Size Distribution Analyzer.
View Article and Find Full Text PDFPoult Sci
December 2024
Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China. Electronic address:
The decline in eggshell quality with increasing hen age may be related to changes in ultrastructure and chemical composition, with matrix proteins playing key roles in these changes. However, research on blue-shelled eggs remains limited. This study investigated the effects of hen age (35, 55, 75, and 85 weeks) on the physical, mechanical, and chemical properties of eggshells in the Xinyang blue-shelled laying hens, as well as their ultrastructural and nanostructural characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!