Endogenous and exogenous pathways maintain the reductive capacity of the phagosome.

J Leukoc Biol

Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada; and Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Alberta, Canada

Published: July 2016

Although endosomes, lysosomes, and phagosomes require a reductive environment for the optimal activity of disulfide reductases and other thiol-dependent enzymes, how these reductive environments are established and maintained remain unknown. Our goal in this study was to begin to elucidate the redox control systems responsible for maintaining redox-sensitive enzymatic activities in the phagolysosome of murine macrophages. Through the use of specific inhibitors and genetic knockdown of known redox enzymes, we identified redox pathways that influence phagosomal disulfide reduction. In particular, known inhibitors of the NADPH-dependent selenoprotein, thioredoxin reductase, were shown to inhibit phagosomal disulfide reduction and phagosomal proteolysis. This was supported by the observation that conditional deletion of the selenocysteine tRNA in macrophages decreased phagosomal disulfide reduction capacity. In addition, pharmacologic inhibition of the pentose phosphate pathway decreased rates of disulfide reduction and proteolysis in the phagosome, implicating NADPH as a source of phagosomal reductive energy. Finally, by analyzing the effect of extracellular redox couples, such as cysteine:cystine on thiol-dependent phagosomal processes, we demonstrated that the extracellular space can additionally supply the phagosome with reductive energy. Collectively, these data demonstrate that defined cytosolic reductive pathways act in concert with the uptake of cysteine from the extracellular space to support thiol-dependent chemistries in the phagosome.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.2HI0315-083RDOI Listing

Publication Analysis

Top Keywords

disulfide reduction
16
phagosomal disulfide
12
reductive energy
8
extracellular space
8
reductive
6
phagosomal
6
disulfide
5
endogenous exogenous
4
exogenous pathways
4
pathways maintain
4

Similar Publications

Platelet factor 4 (PF4), a specific protein primarily found in megakaryocytes and platelet α-granules, plays an essential role in the coagulation process. It carries a high positive charge and thus has a unique ability to readily form complexes with negatively charged heparin. This interaction between PF4 and heparin plays a crucial role in platelet aggregation and thrombosis, resulting in heparin-induced thrombocytopenia (HIT).

View Article and Find Full Text PDF

CASC8 activates the pentose phosphate pathway to inhibit disulfidptosis in pancreatic ductal adenocarcinoma though the c-Myc-GLUT1 axis.

J Exp Clin Cancer Res

January 2025

Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.

Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.

Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

The Effect of Mono- and Di-Saccharides on the Microbiome of Dairy Cow Manure and Its Odor.

Microorganisms

December 2024

Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, 2413 Nashville Road, Suite B5, Bowling Green, KY 42101, USA.

In a previous experiment, we showed that the odor of manure slurries could be improved by anaerobic incubation with the sugars glucose, lactose, and sucrose. This improvement was due to reductions in the concentrations of malodorants, including dimethyl disulfide, -cresol, -ethylphenol, indole, and skatole, and a shift to the production of fruity esters, including ethyl butyrate and propyl propanoate. Due to large concentrations of lactic acid produced by the sugar-amended manure slurries, we inferred that lactic acid bacteria were involved in improving the manure slurry odor.

View Article and Find Full Text PDF

Theranostic Contact Lens for Ocular Cystinosis Utilizing Gold Nanoparticles.

Biosensors (Basel)

January 2025

Department of Optometry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.

Ocular cystinosis is a disease in which accumulated cystine crystals cause damage to the eyes, necessitating timely treatment and ongoing monitoring of cystine levels. The current treatment involves frequent administration of cysteamine eye drops, which suffer from low bioavailability and can lead to drug toxicity, making it essential to prescribe an appropriate dosage based on the patient's condition. Additionally, cystine crystal levels are typically assessed subjectively via slit-lamp examination, requiring frequent clinical visits and causing discomfort for the patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!