Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using litter bag method, we studied the responses of soil microbial biomass carbon (MBC), microbial respiration (MR) and microbial metabolic quotient (qCO2) in 0-5 cm, 5-10 cm and 10-20 cm soil layers to home-field advantage of Betula platyphlla and Quercus mongolica leaf litter decomposition in Liaoheyuan Nature Reserve, northern Hebei Province. The results showed that the contents of MBC in Betula platyphila and Quercus mongolica leaf litter treatments in home environment (Bh and Qh treatments) were significant higher than that in B. platyphlla and Q. mongolica leaf litter treatments in non-home environment (Ba and Qa treatments). There was no significant difference in MR between home and non-home environments. Response degree of MBC and MR to home-field advantage of different litter decomposition was inconsistent. The MBC of the different soil layers in Qa treatment fell by 39.6%, 34.9% and 33.5% compared to Qh treatment, respectively, and that in B. platyphlla treatment was decreased by 31.6%, 27.1% and 17.0%, respectively. MR of the different soil layers in Qa treatment accounted for 96.3%, 92.4% and 83.7% of Qh treatment, respectively, while MR in B. platyphila treatment was 99. 4%, 97. 3% and 101.3%, respectively. In contrast to MBC, qCO2 in soil showed a reverse pattern. Our study suggested that rich nutrients in soil enhanced microbial activity and weakened the conflict of nutrient uptake between plants and microorganisms, which led to the result that MBC and qCO2 had an obvious response to home-field advantage of litter decomposition, when litter decomposed in its home environment. There was a weak response between MR and home-field advantage of litter decomposition, because of influence of soil temperature, water content and their interaction. Furthermore, MBC, MR and qCO2 had a higher response degree to home-field advantage of Q. mongolica litter than B. platyphila litter, since lower quality litter exhibited higher home-field advantage of litter decomposition.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!