The developmental changes in myosin gene expression in the masseter muscle of embryonic and juvenile kittens were examined immunocytochemically using anti-myosin heavy chain antibodies of various specificities. In the mature cat, this muscle contains only two phenotypes, the majority of fibres are superfast, the rest being slow fibres. In foetal tissues, the histological appearance of bundles of myotubes, comprising a large central myotube surrounded by a rosette of smaller myotubes, strongly suggest the existence in the jaw muscle of primary and secondary fibres during development. Immunocytochemical data are consistent with the hypothesis that there are four types of fibre; two types of primary fibre as well as two types of secondary fibre. (1) Slow primaries stain strongly with an anti-slow myosin antibody throughout the period under study. These fibres transiently express embryonic but not foetal myosin. (2) Superfast primaries stain for embryonic/foetal and slow myosins in the perinatal period but progressively replace these myosins with superfast myosin during postnatal development. (3) Superfast secondaries initially express embryonic/foetal myosins, but later, beginning around the time of birth progressively replace these myosins with superfast myosin. These fibres do not express slow myosin. (4) Slow secondaries, which initially also express embryonic/foetal myosins, but which postnatally express slow or slow and superfast myosins and express only slow myosin in the adult. These four types of fibres are homologous to the four isotypes of limb muscle fibres and may be derived from distinct lineages of myoblasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01758427 | DOI Listing |
Drug Metab Dispos
January 2025
Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas. Electronic address:
In vitro models that can faithfully replicate critical aspects of kidney tubule function such as directional drug transport are in high demand in pharmacology and toxicology. Accordingly, development and validation of new models is underway. The objective of this study was to characterize physiologic and transport functions of various sources of human renal proximal tubule epithelial cells (RPTECs).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
Purpose: The purpose of this study was to investigate the contribution and natural progression of ABCA4 deep intronic variants (DIVs) among a Chinese Stargardt disease (STGD) cohort.
Methods: For unsolved STGD probands, DIVs in ABCA4 were detected by next-generation sequencing, and splicing effects were evaluated by in silico tools and validated through minigene experiments. Comprehensive ocular examinations, especially fundus changes, were carried out and analyzed.
J Formos Med Assoc
January 2025
Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. Electronic address:
Background: Inflammatory myofibroblastic tumors (IMTs), rare soft tissue neoplasms, are characterized by a blend of myofibroblastic proliferation and inflammatory features. While generally characterized by slow growth, IMTs can exhibit locally aggressive behavior, and in rare instances, metastasize to distant sites. This study elucidated the clinical characteristics, molecular profile, and tumor microenvironment of thoracic IMTs.
View Article and Find Full Text PDFCell Rep Med
January 2025
Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China. Electronic address:
C-C chemokine receptor type 2 (CCR2) cardiac-resident macrophages (CCR2 cRMs) are known to promote cardiac repair after myocardial infarction (MI). However, the substantial depletion and slow recovery of CCR2 cRMs pose significant barriers in cardiac recovery. Here, we construct a functional conductive cardiac patch (CCP) that can provide exogenously elastic conductive microenvironment and induce endogenously reparative microenvironment mediated by CCR2 cRMs for MI repair.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:
Tumor vasculature exhibit numerous abnormal features distinct from those of healthy vessels, potentially advancing tumor development by establishing an aberrant microenvironment. Therefore, vascular normalization has proven to be an effective tactic for substantially enhancing treatment efficacy across multiple tumors. However, the methods to attain vascular normalization may vary among tumor types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!