Accumulation of amyloid β (Aβ) in the brain is a key pathological hallmark of Alzheimer's disease (AD). Because aging is the most prominent risk factor for AD, understanding the molecular changes during aging is likely to provide critical insights into AD pathogenesis. However, studies on the role of miRNAs in aging and AD pathogenesis have only recently been initiated. Identifying miRNAs dysregulated by the aging process in the brain may lead to novel understanding of molecular mechanisms of AD pathogenesis. Here, we identified that miR-186 levels are gradually decreased in cortices of mouse brains during aging. In addition, we demonstrated that miR-186 suppresses β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) expression by directly targeting the 3'UTR of Bace1 mRNA in neuronal cells. In contrast, inhibition of endogenous miR-186 significantly increased BACE1 levels in neuronal cells. Importantly, miR-186 over-expression significantly decreased Aβ level by suppressing BACE1 expression in cells expressing human pathogenic mutant amyloid precursor protein. Taken together, our data demonstrate that miR-186 is a potent negative regulator of BACE1 in neuronal cells and it may be one of the molecular links between brain aging and the increased risk for AD during aging. We identified that miR-186 levels are gradually decreased in mouse cortices during aging. Furthermore, we demonstrated that miR-186 is a novel negative regulator of beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) expression in neuronal cells. Therefore, we proposed that reduction in miR-186 levels during aging may lead to the up-regulation of BACE1 in the brain, thereby increasing a risk for Alzheimer's disease in aged individuals. Read the Editorial Highlight for this article on page 308.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837067PMC
http://dx.doi.org/10.1111/jnc.13507DOI Listing

Publication Analysis

Top Keywords

bace1 expression
16
neuronal cells
16
mir-186 levels
12
amyloid precursor
12
mir-186
9
aging
9
bace1
8
alzheimer's disease
8
understanding molecular
8
identified mir-186
8

Similar Publications

Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive function, for which few effective treatments exist. This study investigated the neuroprotective potential of root extract and its key constituents (baicalein, chrysin, oroxylin A) against AD hallmarks. The extract and its constituents exhibited antioxidant activity in the DPPH assay.

View Article and Find Full Text PDF

Alzheimer's disease, a progressively degenerative neurological disorder, is the most common cause of dementia in the elderly. While its precise etiology remains unclear, researchers have identified diverse pathological characteristics and molecular pathways associated with its progression. Advances in scientific research have increasingly highlighted the crucial role of non-coding RNAs in the progression of Alzheimer's disease.

View Article and Find Full Text PDF

People with mild cognitive impairment (MCI) carry a considerable risk of developing dementia. Studies have shown that female sex hormones have long-lasting neuroprotective and anti-aging properties, and the increased risk of MCI and AD is associated with the lack of estrogen during menopause. Previous studies have shown that Tiao Geng Decoction (TGD) may have antioxidant and anti apoptotic properties, which may prevent neurodegenerative diseases.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!