Predictors of Whole-Body Insulin Sensitivity Across Ages and Adiposity in Adult Humans.

J Clin Endocrinol Metab

Divisions of Endocrinology and Metabolism (A.Z.L., M.L.J., M.M.R., A.R.K., K.D., R.R.E., K.S.N., I.R.L.), Biomedical Statistics and Informatics (S.D.), and Radiology (J.D.P., M.T.G.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905.

Published: February 2016

Context: Numerous factors are purported to influence insulin sensitivity including age, adiposity, mitochondrial function, and physical fitness. Univariate associations cannot address the complexity of insulin resistance or the interrelationship among potential determinants.

Objective: The objective of the study was to identify significant independent predictors of insulin sensitivity across a range of age and adiposity in humans.

Design, Setting, And Participants: Peripheral and hepatic insulin sensitivity were measured by two stage hyperinsulinemic-euglycemic clamps in 116 men and women (aged 19-78 y). Insulin-stimulated glucose disposal, the suppression of endogenous glucose production during hyperinsulinemia, and homeostatic model assessment of insulin resistance were tested for associations with 11 potential predictors. Abdominal subcutaneous fat, visceral fat (AFVISC), intrahepatic lipid, and intramyocellular lipid (IMCL) were quantified by magnetic resonance imaging and spectroscopy. Skeletal muscle mitochondrial respiratory capacity (state 3), coupling efficiency, and reactive oxygen species production were evaluated from muscle biopsies. Aerobic fitness was measured from whole-body maximum oxygen uptake (VO2 peak), and metabolic flexibility was determined using indirect calorimetry.

Results: Multiple regression analysis revealed that AFVISC (P < .0001) and intrahepatic lipid (P = .002) were independent negative predictors of peripheral insulin sensitivity, whereas VO2 peak (P = .0007) and IMCL (P = .023) were positive predictors. Mitochondrial capacity and efficiency were not independent determinants of peripheral insulin sensitivity. The suppression of endogenous glucose production during hyperinsulinemia model of hepatic insulin sensitivity revealed percentage fat (P < .0001) and AFVISC (P = .001) as significant negative predictors. Modeling homeostatic model assessment of insulin resistance identified AFVISC (P < .0001), VO2 peak (P = .001), and IMCL (P = .01) as independent predictors.

Conclusion: The reduction in insulin sensitivity observed with aging is driven primarily by age-related changes in the content and distribution of adipose tissue and is independent of muscle mitochondrial function or chronological age.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880121PMC
http://dx.doi.org/10.1210/jc.2015-2892DOI Listing

Publication Analysis

Top Keywords

insulin sensitivity
32
insulin resistance
12
vo2 peak
12
insulin
11
sensitivity
8
age adiposity
8
mitochondrial function
8
hepatic insulin
8
suppression endogenous
8
endogenous glucose
8

Similar Publications

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

Background: Triglyceride-glucose (TyG) index was regarded as a cost-efficient and reliable clinical surrogate marker for insulin resistance (IR), which was significantly correlated with cardiovascular disease (CVD). However, the TyG index and incident CVD in non-diabetic hypertension patients remains uncertain. The aim of study was to explore the impact of TyG index level and variability on risk of CVD among non-diabetic hypertension patients.

View Article and Find Full Text PDF

Metabolic syndrome (Mets) in adolescents is a growing public health issue linked to obesity, hypertension, and insulin resistance, increasing risks of cardiovascular disease and mental health problems. Early detection and intervention are crucial but often hindered by complex diagnostic requirements. This study aims to develop a predictive model using NHANES data, excluding biochemical indicators, to provide a simple, cost-effective tool for large-scale, non-medical screening and early prevention of adolescent MetS.

View Article and Find Full Text PDF

Clinical and biochemical factors associated with amygdalar metabolic activity.

NPJ Aging

January 2025

Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Japan.

We investigated clinical factors and biochemical markers associated with amygdalar metabolic activity evaluated by [F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) in 346 subjects without a history of malignant neoplasms. Univariate regression analysis revealed significant relationships between amygdalar metabolic activity and fasting plasma glucose (FPG), glycated hemoglobin, coronary artery disease (CAD) history, aspirin use, oral hypoglycemic agents (OHAs) use, and asymmetric dimethylarginine (ADMA). In multiple stepwise regression analysis, FPG and CAD history were independently associated with amygdalar metabolic activity.

View Article and Find Full Text PDF

To analyze the occurrence of metabolic dysfunction-associated fatty liver disease (MAFLD) and related inflammatory indicators in obstructive sleep apnea hypopnea syndrome (OSAHS) and explore the risk factors of MAFLD. A cross-sectional study. From January 2022 to October 2024,172 patients with sleep disorders were enrolled in the First Affiliated Hospital of Soochow University,including 38 patients with non-OSAHS,53 patients with mild OSAHS,37 patients with moderate OSAHS,and 44 patients with severe OSAHS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!