A Novel Organophosphorus Hybrid with Excellent Thermal Stability: Core-Shell Structure, Hybridization Mechanism, and Application in Flame Retarding Semi-Aromatic Polyamide.

ACS Appl Mater Interfaces

Center for Degradable and Flame-Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China.

Published: January 2016

An organophosphorous hybrid (BM@Al-PPi) with unique core-shell structure was prepared through hybridization reaction between boehmite (BM) as the inorganic substrate and phenylphosphinic acid (PPiA) as the organic modifier. Fourier transform infrared spectra (FTIR), solid state (31)P and (27)Al magic angle spinning nuclear magnetic resonance, X-ray diffraction, and element analysis were used to investigate the chemical structure of the hybrids, where the microrod-like core was confirmed as Al-PPi aggregates generated from the reaction between BM and PPiA, and those irregular nanoparticles in the shell belonged to residual BM. Compared with the traditional dissolution-precipitation process, a novel analogous suspension reaction mode was proposed to explain the hybridization process and the resulting product. Scanning electronic microscopy further proved the core-shell structure of the hybrids. BM exhibited much higher initial decomposition temperature than that of Al-PPi; therefore, the hybrid showed better thermal stability than Al-PPi, and it met the processing temperature of semi-aromatic polyamide (HTN, for instance) as an additive-type flame retardant. Limiting oxygen index and cone calorimetric analysis suggested the excellent flame-retardant performance and smoke suppressing activity by adding the resulting hybrid into HTN.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b10287DOI Listing

Publication Analysis

Top Keywords

core-shell structure
12
thermal stability
8
semi-aromatic polyamide
8
structure hybrids
8
novel organophosphorus
4
hybrid
4
organophosphorus hybrid
4
hybrid excellent
4
excellent thermal
4
stability core-shell
4

Similar Publications

Characterizing molten corium-concrete interaction (MCCI) fuel debris in Fukushima reactors is essential to develop efficient methods for its removal. To enhance the accuracy of microscopic observation and focused ion beam (FIB) microsampling of MCCI fuel debris, we developed a three-dimentional FIB scanning electron microscopy (SEM) technique with a multiphase positional misalignment (MPPM) correction method. This system automatically aligns voxel positions, corrects contrast, and removes artifacts from a series of over 500 SEM images.

View Article and Find Full Text PDF

Silica Nanoparticle-Protein Aggregation and Protein Corona Formation Investigated with Scattering Techniques.

ACS Appl Mater Interfaces

January 2025

School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.

Protein-nanoparticle interactions and the resulting corona formation play crucial roles in the behavior and functionality of nanoparticles in biological environments. In this study, we present a comprehensive analysis of protein corona formation with superfolder green fluorescent protein (sfGFP) and bovine serum albumin in silica nanoparticle dispersions using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). For the first time, we subtracted the scattering of individual proteins in solution and individual nanoparticles from the protein-nanoparticle complexes.

View Article and Find Full Text PDF

Gold nanorod in silver tetrahedron: Cysteamine mediated synthesis of SERS probes with embedded internal markers for AFP detection.

Anal Chim Acta

February 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:

Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.

Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).

View Article and Find Full Text PDF

Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.

View Article and Find Full Text PDF

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!