The term "uterosomes" was first used to classify extracellular membrane vesicles released into the uterine luminal fluid. These extracellular vesicles (EVs), varying in sizes, fit the classification of exosomes and microvesicles on the basis of size, the presence of the CD9 biochemical marker, and lateral orientation of the membrane. Uterosomes appear to be formed by the apocrine pathway, similar to other reproductive EVs. In the murine system, the protein cargo carried by uterosomes includes glycosyl phosphatidylinositol (GPI)-linked and transmembrane proteins and these are hormonally regulated, appearing at high levels during proestrus/estrus and only marginally present at diestrus /metestrus. Uterosomes have been shown to deliver proteins in their cargo to sperm, with a functional impact, and are thought to participate in promoting sperm capacitation. Further studies are warranted, particularly those aimed at identifying the contents of their cargo during the estrus and menstrual cycle and the role they play n sperm maturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2741/s451 | DOI Listing |
FASEB J
September 2024
Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA.
Pre-implantation embryonic development occurs in the oviduct during the first few days of pregnancy. The presence of oviductal extracellular vesicles (oEVs, also called oviductosomes) is crucial for pre-implantation embryonic development in vivo as oEVs often contain molecular transmitters such as proteins. Therefore, evaluating oEV cargo during early pregnancy could provide insights into factors required for proper early embryonic development that are missing in the current in vitro embryo culture setting.
View Article and Find Full Text PDFFront Cell Dev Biol
October 2023
Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain.
The seminal plasma (SP) is the liquid component of semen that facilitates sperm transport through the female genital tract. SP modulates the activity of the ovary, oviductal environment and uterine function during the periovulatory and early pregnancy period. Extracellular vesicles (EVs) secreted in the oviduct (oEVs) and uterus (uEVs) have been shown to influence the expression of endometrial genes that regulate fertilization and early embryo development.
View Article and Find Full Text PDFReprod Sci
October 2022
Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China.
Oviductal extracellular vesicles (OEVs) play an important role in fertilization and embryo development. However, it remains largely unknown whether the size and protein cargo of OEVs change during the estrous cycle in mice. This study analyzed the changes in the size distribution and protein cargo of OEVs at four stages of the estrous cycle in mice.
View Article and Find Full Text PDFReproduction
April 2020
Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
In mammals, around the time of ovulation, the hormonal profile dynamically changes in synchrony with reproductive events occurring in the oviduct, that is, sperm arrival, fertilization, and early embryo development. Extracellular vesicles (EVs) have been recently recognized as key components of the embryonic milieu; however, composition and function of oviductal EVs during this crucial period remains to be further explored. Therefore, we initially characterized EVs from porcine oviductal fluid specifically around the critical ovulation window: that is, estrus (E), late estrus (LE, day of expected ovulation), post ovulation (PO), and additionally diestrus (D).
View Article and Find Full Text PDFSci Rep
October 2018
Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
Oviductosomes (OVS) are nano-sized extracellular vesicles secreted in the oviductal luminal fluid by oviductal epithelial cells and known to be involved in sperm capacitation and fertility. Although they have been shown to transfer encapsulated proteins to sperm, cargo constituents other than proteins have not been identified. Using next-generation sequencing, we demonstrate that OVS are carriers of microRNAs (miRNAs), with 272 detected throughout the estrous cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!