Oligodendrocyte progenitor cells: the ever mitotic cells of the CNS.

Front Biosci (Schol Ed)

Wellcome Trust- MRC Cambridge Stem Cell Institute, Allbutt Building, Cambridge Biomedical Campus, Hill Road, Cambridge, CB2 0AH, UK,

Published: January 2016

AI Article Synopsis

Article Abstract

Oligodendrocyte Progenitor Cells (OPCs) first appear at mid embryogenic stages during development of the mammalian CNS and a mitotically active population of them remains present even into late adulthood. During the life-time of the organism they initially proliferate and migrate in order to populate the whole nervous tissue, then they massively generate oligodendrocytesand finally they switch to a less mitotically active phase generating new oligodendrocytes at a slow rate in the adult brain; importantly, they can regenerate acutely or chronically destroyed myelin. All the above depend on the capacity of OPCs to regulate their cell cycle within different contexts. In this review we describe the development of OPCs, their differential mitotic behavior in various conditions (embryo, disease, ageing), we discuss what is known about the mechanisms that control their cell cycle and wehighlightfew interesting and still open questions.

Download full-text PDF

Source
http://dx.doi.org/10.2741/s444DOI Listing

Publication Analysis

Top Keywords

oligodendrocyte progenitor
8
progenitor cells
8
mitotically active
8
cell cycle
8
cells mitotic
4
mitotic cells
4
cells cns
4
cns oligodendrocyte
4
cells opcs
4
opcs appear
4

Similar Publications

Purpose: This study aimed to investigate the pathological responses of glial cells at different distances from amyloid plaques and the characteristics of oligodendrocyte precursor cells (OPCs) in perivascular clustering. Additionally, it sought to explore the impact of exercise training on AD pathology, specifically focusing on the modulation of glial responses and the effects of OPC perivascular clustering.

Methods: Three-month-old C57BL/6 and APP/PS1 mice were divided into four groups: wild-type sedentary, wild-type exercise, sedentary AD, and exercise AD groups.

View Article and Find Full Text PDF

The pericellular function of Fibulin-7 in the adhesion of oligodendrocyte lineage cells to neuronal axons during CNS myelination.

Biochem Biophys Res Commun

January 2025

Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan. Electronic address:

Myelin is an electrical insulator that enables saltatory nerve conduction and is essential for proper functioning of the central nervous system (CNS). It is formed by oligodendrocytes (OLs) in the CNS, and during OL development various molecules, including extracellular matrix (ECM) proteins, regulate OL differentiation and myelination; however, the role of ECM proteins in these processes is not well understood. Our present work is centered on the analyses of the expression and function of fibulin-7 (Fbln7), an ECM protein of the fibulin family, in OL differentiation.

View Article and Find Full Text PDF

Background: Brain intraparenchymal schwannoma is a rare clinical entity, generally curable with adequate resection.

Methods And Results: We describe a case in a male patient first presenting at 19 months of age, the youngest reported age for this lesion. It also appears to be the first case connected to a germline TSC2 p.

View Article and Find Full Text PDF

As one of the most commonly used general anesthetics (GAs) in surgery, numerous studies have demonstrated the detrimental effects of sevoflurane exposure on myelination in the developing and elderly brain. However, the impact of sevoflurane exposure on intact myelin structure in the adult brain is barely discovered. Here, we show that repeated sevoflurane exposure, but not single exposure, causes hypomyelination and abnormal ultrastructure of myelin sheath in the prefrontal cortex (PFC) of adult male mice, which is considered as a critical brain region for general anesthesia mediated consciousness change.

View Article and Find Full Text PDF

IDH-mutant low-grade gliomas (LGGs) are slow-growing brain tumors that frequently progress to aggressive high-grade gliomas that have dismal outcomes. In a recent study, Wu and colleagues provide critical insights into the mechanisms underlying malignant progression by analyzing single-cell gene expression and chromatin accessibility across different tumor grades. Their findings support a two-phase model: in early stages, tumors are primarily driven by oligodendrocyte precursor-like cells and epigenetic alterations that silence tumor suppressors like CDKN2A and activate oncogenes such as PDGFRA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!