Loss-of-function mutations in the MID1 gene cause a rare monogenic disorder, Opitz BBB/G syndrome (OS), which is characterized by malformations of the ventral midline. The MID1 gene encodes the MID1 protein, which assembles a large microtubule-associated protein complex. Intensive research over the past several years has shed light on the function of the MID1 protein as a ubiquitin ligase and regulator of mTOR signalling and translational activator. As a central player in the cell MID1 has been implicated in the pathogenesis of various other disorders in addition to OS including cancer and neurodegenerative diseases. Influencing the activity of the MID1 protein complex is a promising new strategy for the treatment of these diseases. In this review we will summarize the current knowledge about MID1, its involvement in the pathogenesis of OS and other diseases and possible strategies for therapy development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2741/4413 | DOI Listing |
Plant Physiol
December 2024
Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
MID1-COMPLEMENTING ACTIVITY (MCA) is a land plant-specific, plasma membrane protein, and Ca2+ signaling component that responds to exogenous mechanical stimuli, such as touch, gravity, and hypotonic-osmotic stress, in various plant species. MCA is essential for cell proliferation and differentiation during growth and development in rice (Oryza sativa) and maize (Zea mays). However, the mechanism by which MCA mediates cell proliferation and differentiation via Ca2+ signaling remains unknown.
View Article and Find Full Text PDFRSC Med Chem
September 2024
Organische Chemie II, Universität Siegen Adolf-Reichwein-Str. 2 57076 Siegen Germany
Huntington's disease (HD) is a devastating, incurable condition whose pathophysiological mechanism relies on mutant RNA CAG repeat expansions. Aberrant recruitment of RNA-binding proteins by mutant CAG hairpins contributes to the progress of neurodegeneration. In this work, we identified a novel binder based on an aurone scaffold that reduces the level of binding of HTT mRNA to the MID1 protein .
View Article and Find Full Text PDFCurr Biol
October 2024
Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands. Electronic address:
Kinesin and dynein-dynactin motors move endosomes and other vesicles bidirectionally along microtubules, a process mainly studied under in vitro conditions. Here, we provide a physiological bidirectional transport model following color-coded, endogenously tagged transport-related proteins as they move through a crowded cellular environment. Late endosomes (LEs) surf bidirectionally on Protrudin-enriched endoplasmic reticulum (ER) membrane contact sites, while hopping and gliding along microtubules and bypassing cellular obstacles, such as mitochondria.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Laboratoire PRéTI, UR 24184, Université de Poitiers, France.
Lipid droplets (LD) are storage sites for neutral lipids that can be used as a source of energy during nutrient starvation, but also function as hubs for fatty acid (FA) trafficking between organelles. In the yeast Saccharomyces cerevisiae, the absence of LD causes a severe disorganization of the endomembrane network during starvation. Here we show that cells devoid of LD respond to amino acid (AA) starvation by activating the serine/threonine phosphatase calcineurin and the nuclear translocation of its target protein Crz1.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China. Electronic address:
Benz[a]anthracene (BaA), a hazardous polycyclic aromatic hydrocarbon classified by the EPA, is a probable reproductive toxicant. Epidemiological studies suggest that BaA exposure may be a risk factor for recurrent miscarriage (RM). However, the underlying mechanisms are not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!