Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692786PMC
http://dx.doi.org/10.3791/53377DOI Listing

Publication Analysis

Top Keywords

flight insects
12
flight
9
flight mill
8
mill study
8
study tethered
8
tethered flight
8
flight mills
8
insects
6
simple flight
4
mill
4

Similar Publications

Divergence in the Morphology and Energy Metabolism of Adult Polyphenism in the Cowpea Beetle .

Insects

December 2024

Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Adult polyphenism is a prevalent form of adaptive evolution that enables insects to generate discrete phenotypes based on environmental factors. However, the morphology and molecular mechanisms underlying adult dimorphism in (a global storage pest) remain elusive. Understanding these mechanisms is crucial for predicting the dispersal and population dynamics of .

View Article and Find Full Text PDF

The melon fly, , poses a severe threat to the country's agricultural productivity, particularly in the cultivation of cucurbitaceous crops. This study was conducted to determine the ideal irradiation dose to be used to set up a Sterile Insect Technique (SIT)-based strategy to control outbreaks in Sri Lanka. A colony was established and maintained under standard laboratory conditions.

View Article and Find Full Text PDF

Biocontrol Potential of Rhizospheric Bacillus Strains Against Jagger Causing Lettuce Drop.

Microorganisms

January 2025

State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.

Phytopathogenic Jagger causes lettuce drop, a destructive soil-borne disease. As potential biocontrol agents for this disease, 2 of 31 bacterial strains isolated from soil samples from fields containing Jagger were identified using in vitro antagonistic assays against Jagger. Bioactivity experiments showed that Bac20 had higher inhibitory activity against Jagger than Bac45.

View Article and Find Full Text PDF

High levels of sinigrin trigger synthesis of fatty acids in Plutella xylostella (L.).

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune- 411 007, Maharashtra, India. Electronic address:

Diamondback moth (Lepidoptera: Plutellidae; Plutella xylostella L.) is a specialist insect of the Brassicaceae family, damaging economically important crops, such as cabbage and cauliflower. Glucosinolates, also known as 'mustard oil bombs' are present in all Brassicaceae members, of which sinigrin (allyl-glucosinolate or 2-propenyl-glucosinolate) is a major aliphatic compound.

View Article and Find Full Text PDF

Insects enhance aerodynamic flight control using the dynamic movement of their appendages, aiding in balance, stability, and manoeuvrability. Although biologists have observed these behaviours, the phenomena have not been expressed in a unified mathematical flight dynamics framework. For instance, relevant existing models tend to disregard either the aerodynamic or the inertial effects of the appendages of insects, such as the abdomen, based on the assumption that appendage dynamic effects dominate in comparison to aerodynamic effects, or that appendages are stationary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!