Hydrogen Sulfide Selectively Inhibits γ-Secretase Activity and Decreases Mitochondrial Aβ Production in Neurons from APP/PS1 Transgenic Mice.

Neurochem Res

Experimental Research Center, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China.

Published: May 2016

Hydrogen sulfide (H2S) is now considered to be a gasotransmitter and may be involved in the pathological process of Alzheimer's disease (AD). A majority of APP is associated with mitochondria and is a substrate for the mitochondrial γ-secretase. The mitochondria-associated APP metabolism where APP intracellular domains (AICD) and Aβ are generated locally and may contribute to mitochondrial dysfunction in AD. Here, we aimed to investigate the ability of H2S to mediate APP processing in mitochondria and assessed the possible mechanisms underlying H2S-mediated AD development. We treated neurons from APP/PS1 transgenic mice with a range of sodium hydrosulfide (NaHS) concentrations. NaHS attenuated APP processing and decreased Aβ production in mitochondria. Meanwhile, NaHS did not changed BACE-1 and ADAM10 (a disintegrin and metalloprotease 10) protein levels, but NaHS (30 μM) significantly increased the levels of presenilin 1(PS1), PEN-2, and NCT, as well as improved the γ-secretase activity, while NaHS (50 μM) exhibits the opposing effects. Furthermore, the intracellular ATP and the COX IV activity of APP/PS1 neurons were increased after 30 μM NaHS treatment, while the ROS level was decreased and the MMP was stabilized. The effect of NaHS differs from DAPT (a non-selective γ-secretase inhibitor), and it selectively inhibited γ-secretase in vitro, without interacting with Notch and modulating its cleavage. The results indicated that NaHS decreases Aβ accumulation in mitochondria by selectively inhibiting γ-secretase. Thus, we provide a mechanistic view of NaHS is a potential anti-AD drug candidate and it may decrease Aβ deposition in mitochondria by selectively inhibiting γ-secretase activity and therefore protecting the mitochondrial function during AD conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-015-1807-7DOI Listing

Publication Analysis

Top Keywords

γ-secretase activity
12
nahs
9
hydrogen sulfide
8
aβ production
8
neurons app/ps1
8
app/ps1 transgenic
8
transgenic mice
8
app processing
8
mitochondria selectively
8
selectively inhibiting
8

Similar Publications

Asymmetric cell division (ACD) allows daughter cells of a polarized mother to acquire different developmental fates. In , the Wnt/β-catenin Asymmetry (WβA) pathway regulates many embryonic and larval ACDs; here, a Wnt gradient induces an asymmetric distribution of Wnt signaling components within the dividing mother cell. One terminal nuclear effector of the WβA pathway is the transcriptional activator SYS-1/β-catenin.

View Article and Find Full Text PDF

Aim: This study aimed to evaluate the compliance of dentists in Croatia and the Czech Republic with endodontic recommendations and identify the subjective and objective factors influencing their adherence to them.

Methodology: A total of 1386 dentists from Croatia and the Czech Republic participated in an online survey through a self-administered, author-designed questionnaire. After excluding those who did not perform root canal treatments (RCT), 1376 responses (394 from Croatia and 982 from the Czech Republic) were statistically analysed.

View Article and Find Full Text PDF

β-tubulin isotypes exhibit similar sequences but different activities, suggesting that limited sequence divergence is functionally important. We investigated this hypothesis for TUBB3/β3, a β-tubulin linked to aggressive cancers and chemoresistance in humans. We created mutant yeast strains with β-tubulin alleles that mimic variant residues in β3 and find that residues at the lateral interface are sufficient to alter microtubule dynamics and response to microtubule targeting agents.

View Article and Find Full Text PDF

Cobalt Hexacyanoferrate Cathode with Stable Structure and Fast Kinetics for Aqueous Zinc-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xìan, Shaanxi 710049, China.

Prussian blue analogues (PBAs) show great promise as cathode candidates for aqueous zinc-ion batteries thanks to their high operating voltage, open-framework structure, and low cost. However, suffering from numerous vacancies and crystal water, the electrochemical performance of PBAs remains unsatisfactory, with limited capacity and poor cycle life. Here, a simple coprecipitation method is shown to synthesize well-crystallized cobalt hexacyanoferrate (CoHCF) with a small amount of water and high specific surface area.

View Article and Find Full Text PDF

RNA interference (RNAi) has rapidly matured as a novel therapeutic approach. In this field, chemical modifications have been critical to the clinical success of short interfering RNAs (siRNAs). Notwithstanding the significant advances, achieving robust durability and gene silencing in extrahepatic tissues, as well as reducing off-target effects of siRNA, are areas where chemical modifications can still improve siRNA performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!