Spinocerebellar ataxia type 1 (SCA1) is a devastating neurodegenerative disorder in which an abnormally expanded polyglutamine tract is inserted into causative ataxin-1 proteins. We have previously shown that SCA1 knockin (SCA1-KI) mice over 6 months of age exhibit a degeneration of motor neuron axons and their encasing myelin sheaths, as reported in SCA1 patients. We examined whether axon degeneration precedes myelin degeneration or vice versa in SCA1-KI mice and then attempted to mitigate motor neuron degeneration by intrathecally administering mesenchymal stem cells (MSCs). Temporal examination of the diameters of motor neuron axons and their myelin sheaths revealed a decrease in diameter of the axon but not of the myelin sheaths in SCA1-KI mice as early as 1 month of age, which suggests secondary degeneration of the myelin sheaths. We injected MSCs into the intrathecal space of SCA1-KI mice at 1 month of age, which resulted in a significant suppression of degeneration of both motor neuron axons and myelin sheaths, even 6 months after the MSC injection. Thus, MSCs effectively suppressed peripheral nervous system degeneration in SCA1-KI mice. It has not yet been clarified how clinically administered MSCs exhibit significant therapeutic effects in patients with SCA1. The morphological evidence presented in this current mouse study might explain the mechanisms that underlie the therapeutic effects of MSCs that are observed in patients with SCA1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.23698 | DOI Listing |
Hum Mol Genet
December 2024
Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 6124 Harry Hines Blvd. Dallas, TX 75390, United States.
Cells
July 2022
Institute of Living Systems, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia.
Spinocerebellar ataxia type 1 (SCA1) is an intractable progressive neurodegenerative disease that leads to a range of movement and motor defects and is eventually lethal. Purkinje cells (PC) are typically the first to show signs of degeneration. SCA1 is caused by an expansion of the polyglutamine tract in the gene and the subsequent buildup of mutant Ataxin-1 protein.
View Article and Find Full Text PDFCNS Neurosci Ther
August 2016
Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
Aims: Spinocerebellar ataxia type 1 (SCA1) is caused by the ataxin-1 protein (ATXN1) with an abnormally expanded polyglutamine tract and is characterized by progressive neurodegeneration. We previously showed that intrathecal injection of mesenchymal stem cells (MSCs) during the nonsymptomatic stage mitigates the degeneration of the peripheral nervous system (PNS) neurons in SCA1-knock-in (SCA1-KI) mice. We tested in this study whether the therapeutic effects of MSCs in SCA1-KI mice could be reproduced with MSC-releasing factor(s).
View Article and Find Full Text PDFJ Neurosci Res
March 2016
Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
Spinocerebellar ataxia type 1 (SCA1) is a devastating neurodegenerative disorder in which an abnormally expanded polyglutamine tract is inserted into causative ataxin-1 proteins. We have previously shown that SCA1 knockin (SCA1-KI) mice over 6 months of age exhibit a degeneration of motor neuron axons and their encasing myelin sheaths, as reported in SCA1 patients. We examined whether axon degeneration precedes myelin degeneration or vice versa in SCA1-KI mice and then attempted to mitigate motor neuron degeneration by intrathecally administering mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFHum Mol Genet
September 2015
Center for Brain Integration Research, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan,
Spinocerebellar ataxia type 6 (SCA6) is dominantly inherited neurodegenerative disease, caused by an expansion of CAG repeat encoding a polyglutamine (PolyQ) tract in the Cav2.1 voltage-gated calcium channel. Its key pathological features include selective degeneration of the cerebellar Purkinje cells (PCs), a common target for PolyQ-induced toxicity in various SCAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!