The objectives of this study were to compare the effectiveness of liquid helium (LHe) and liquid nitrogen (LN2) as cryogenic liquid for vitrification of bovine immature oocytes with open-pulled straw (OPS) system and determine the optimal cryoprotectant concentration of LHe vitrification. Cumulus oocyte complexes were divided into three groups, namely, untreated group (control), LN2 vitrified with OPS group, and LHe vitrified with OPS group. Oocyte survival was assessed by morphology, nuclear maturation, and developmental capability. Results indicated that the rates of normal morphology, maturation, cleavage, and blastocyst (89.3%, 52.8%, 42.7%, and 10.1%, respectively) in the LHe-vitrified group were all higher than those (79.3%, 43.4%, 34.1%, and 4.7%) in the LN2-vitrified group (P < 0.05) although the corresponding rates in both treated groups decreased compared with the control group (100%, 75.0%, 64.9%, and 40.8%; P < 0.05). Normal calves were obtained after the transfer of blastocysts derived from LHe- and LN2-vitrified oocytes. The effects of the different vitrification solutions (EDS30, EDS35, EDS40, EDS45, and EDS50) in LHe vitrification for bovine immature oocytes vitrification were examined. No difference was found in the rates of morphologically normal oocytes among the EDS30 (87.9%), EDS35 (90.1%), EDS40 (89.4%), and EDS45 (87.2%) groups (P > 0.05). The maturation rate of the EDS35 group (65.0%) was higher than those of the EDS30 (51.3%), EDS40 (50.1%), EDS45 (52.1%), and EDS50 groups (36.9%; P < 0.05). No significant differences were observed in the cleavage and blastocyst rates between the EDS35 (49.0% and 12.1%) and EDS40 (41.7% and 10.2%) groups. However, the cleavage and blastocyst rates in the EDS35 group were higher (P < 0.05) than those of the EDS30 (36.2% and 6.8%), EDS45 (35.9% and 5.8%), and EDS50 (16.6% and 2.2%) groups. In conclusion, LHe can be used as a cryogenic liquid for vitrification of bovine immature oocytes, and it is more efficient than LN2-vitrified oocytes in terms of blastocyst production. EDS35 was the optimal cryoprotectant agent combination for LHe vitrification in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2015.11.020 | DOI Listing |
J Equine Vet Sci
January 2025
Veterinary Reproduction Group, Faculty of Veterinary Medicine, University of Cordoba, Spain. Electronic address:
Sperm vitrification is an alternative freezing method, which includes high cooling rates and non-permeable cryoprotectants agents. The first attempt in equids was using the spheres technique by directly dropping small volumes of the sperm into liquid nitrogen. Later, vitrification was developed using 0.
View Article and Find Full Text PDFVet Sci
November 2024
Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, Brazil.
Ovarian tissue cryopreservation has been widely investigated for preserving female fertility. In the present study, we aimed to compare the effects of three concentrations (1, 1.5, and 3 M) of dimethylsulfoxide (DMSO) on the vitrification of ovarian tissue.
View Article and Find Full Text PDFCryobiology
November 2024
Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavska str., 61016, Kharkiv, Ukraine.
Nanocrystalline cerium dioxide is able to protect living cells from oxidative stress under the influence of various stress factors, in particular under the one of low temperatures. This study investigates the phase-structural transformations in aqueous solutions containing CeO nanoparticles (NPs) and their impact on the cryopreservation process. Differential scanning calorimetry and thermomechanical analysis were used to analyse the phase transitions in aqueous suspensions of CeO NPs and aqueous solutions of the cryoprotectant dimethyl sulfoxide (MeSO) with CeO NPs.
View Article and Find Full Text PDFCryobiology
December 2024
Embrapa Dairy Cattle, Eugênio do Nascimento Ave. 610, 36038-330, Juiz de Fora, MG, Brazil. Electronic address:
Given the significant variation in lipid levels among bovine embryos, our study was designed to associate lipid content to oxidative stress in individual embryos undergoing vitrification, and to assess how this and other morphological parameters impacts cryosurvival. Linear and logistic regression were performed to understand the influence of the variables in the cryosurvival. T-test or Kruskal Wallis were employed to compare means.
View Article and Find Full Text PDFReprod Domest Anim
October 2024
Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
Cryopreservation of bovine oocytes and embryos is essential for long-term preservation and widespread distribution of genetic material, particularly in bovine in vitro embryo production, which has witnessed substantial growth in the past decade due to advancements in reproductive biotechnologies. Among current cryopreservation methods, vitrification has emerged as the preferred cryopreservation technique over slow freezing for preserving oocytes and in vitro-produced (IVP) embryos, as it effectively addresses membrane chilling injury and ice crystal formation. Nonetheless, challenges remain and a simple and robust vitrification protocol that guarantees the efficiency and viability after warming has not yet been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!