Leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower - NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for the species in the red oak subgenus (Erythrobalanus). Quercus stellata (in the white oak subgenus Leucobalanus), on the other hand, increased its isoprene emission rate during August, and showed no decline at high temperatures during June or August, consistent with its high tolerance to drought and adaptation to xeric sites at the prairie-deciduous forest interface. Mid-late October measurements were conducted after soil moisture recharge, but were affected by senescence and cooler temperatures. Isoprene emission rates were considerably lower from all species compared to June and August data. The large differences between the oaks in response to drought emphasizes the need to consider BVOC emissions at the species level instead of just the whole canopy. Monoterpene emissions from Quercus rubra in limited data were highest among the oaks studied, while monoterpene emissions from the other oak species were 80-95% lower and less than assumed in current BVOC emission models. Major monoterpenes from Q. rubra (and in ambient air) were p-cymene, α-pinene, β-pinene, d-limonene, γ-terpinene, β-ocimene (predominantly1,3,7-trans-β-ocimene, but also 1,3,6-trans-β-ocimene), tricyclene, α-terpinene, sabinene, terpinolene, and myrcene. Results are discussed in the context of canopy flux studies conducted at the site during PINOT NOIR, which are described elsewhere. The leaf isoprene emissions before and during the drought were consistent with above canopy fluxes, while leaf and branch monoterpene emissions were an order of magnitude lower than the observed above canopy fluxes, implying that other sources may be contributing substantially to monoterpene fluxes at this site. This strongly demonstrates the need for further simultaneous canopy and enclosure BVOC emission studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.11.086DOI Listing

Publication Analysis

Top Keywords

monoterpene emissions
16
isoprene emission
16
pinot noir
12
emission rates
12
bvoc emission
12
volatile organic
8
organic compound
8
emission models
8
oak subgenus
8
june august
8

Similar Publications

The Amazon forest is the largest source of isoprene emissions, and the seasonal pattern of leaf-out phenology in this forest has been indicated as an important driver of seasonal variation in emissions. Still, it is unclear how emissions vary between different leaf phenological types in this forest. To evaluate the influence of leaf phenological type over isoprene emissions, we measured leaf-level isoprene emission capacity and leaf functional traits for 175 trees from 124 species of angiosperms distributed among brevideciduous and evergreen trees in a central Amazon forest.

View Article and Find Full Text PDF

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Article Synopsis
  • Soil heavy metal pollution and insect herbivory together affect plant volatile organic compound (VOC) emissions, crucial for ecological functions and atmospheric processes.
  • Male eastern cottonwood seedlings emit higher levels of certain VOCs compared to females, particularly when exposed to soil cadmium (Cd) and insect feeding.
  • The study finds that Cd exposure significantly enhances herbivore-induced VOC emissions in male plants, raising potential consequences for ecological relationships and air quality.
View Article and Find Full Text PDF

Emission rates for volatile organic compounds (VOCs) have been quantified from frying, spice and herb cooking, and cooking a chicken curry, using real-time selected-ion flow-tube mass spectrometry (SIFT-MS) for controlled, laboratory-based experiments in a semi-realistic kitchen. Emissions from 7 different cooking oils were investigated during the frying of wheat flatbread (puri). These emissions were dominated by ethanol, octane, nonane and a variety of aldehydes, including acetaldehyde, heptenal and hexanal, and the average concentration of acetaldehyde (0.

View Article and Find Full Text PDF

Arctic haze has attracted considerable scientific interest for decades. However, limited studies have focused on the molecular composition of atmospheric particulate matter that contributes to Arctic haze. Our study collected atmospheric particles at Alert in the Canadian high Arctic from mid-February to early May 2000.

View Article and Find Full Text PDF

The barley powdery mildew disease caused by the biotrophic fungus Blumeria hordei (Bh) poses enormous risks to crop production due to yield and quality losses. Plants and fungi can produce and release volatile organic compounds (VOCs) that serve as signals in plant communication and defense response to protect themselves. The present study aims to identify VOCs released by barley (Hordeum vulgare) during Bh-infection and to decipher VOC-induced disease resistance in receiver plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!