Numerous Chlamydia trachomatis proteins have been identified as potential subunit vaccines, of which the major outer-membrane protein (MOMP) has, so far, proven the most efficacious. Recently, subunit A of the V-type ATP synthase (ATPase; TC0582) complex was shown to elicit partial protection against infection. Computational modeling of a neighboring gene revealed a novel subunit of the V-type ATPase (TC0583). To determine if this newly identified subunit could induce protection and/or enhance the partial protection provided by subunit A alone, challenge studies were performed using a combination of these recombinant proteins. The TC0583 subunit alone and concurrently with TC0582, was used to vaccinate BALB/c mice utilizing CpG-1826 and Montanide ISA 720 VG as adjuvants. Vaccinated animals were challenged intranasally with Chlamydia muridarum and the course of the infection was followed. Mice immunized with individual antigens showed minimal alleviation of body weight reduction; however, mice immunized with TC0583 and TC0582 in combination, displayed weight loss levels close to those observed with MOMP. Importantly, immunization with a combination of recombinant subunit proteins reduced chlamydial inclusion forming units by approximately a log-fold. These protection levels support that, these highly conserved Chlamydia proteins, in combination with other antigens, may serve as potential vaccine candidates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064150 | PMC |
http://dx.doi.org/10.1016/j.micinf.2015.12.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!