Influence of therapeutic radiation on polycaprolactone and polyurethane biomaterials.

Mater Sci Eng C Mater Biol Appl

Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Electronic address:

Published: March 2016

Biomedical polymers are exposed in vivo to ionizing radiation as implants, coatings and bystander materials. High levels of ionizing radiation (e.g. X-ray and gamma) have been reported to cause degradation and/or cross-linking in many polymers. This pilot study sought to determine causes of failure, by investigating how therapeutic radiation affects two different porous polymeric scaffolds: polycaprolactone (PCL) and polyurethane (PU). PCL is a bioresorbable material used in biomedical devices (e.g., dentistry, internal fixation devices and targeted drug delivery capsules). PU is commonly used in medical applications (e.g., coatings for pacemakers, tissue expanders, catheter tubing and wound dressings). PU was specifically fabricated to be a non-degradable polymer in this study. Porous scaffolds, fabricated using solvent casting and/or salt leeching techniques, were placed in phosphate buffered saline (PBS, pH=7.4) and exposed to typical cancer radiotherapy. A total dose of 50 Gy was broken into 25 doses over an eleven-week period. Collected PBS was tested for polymer leachants and degradation products using Gas Chromatography Mass Spectroscopy (GC-MS), results revealed no analyzable leachants from either polymer. Scaffolds were characterized using Environmental Scanning Electron Microscopy, Size-exclusion chromatography (SEC), Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR). No gross visual changes were observed in either polymer, however PU exhibited microstructure changes after irradiation. Increased number average molecular weight and weight average molecular weight in PCL and PU were observed after irradiation, indicating crosslinking. PU displayed an increase in intrinsic viscosity that further confirms increased crosslinking. PCL and PU showed decreases in crystallinity after irradiation, and PU crystallinity shifted from long-range-order hard segments to short-range-order hard segments after irradiation. Results from both PCL and PU suggest changes in polymer backbones. This preliminary study suggests that therapeutic radiation doses cause both degradation and crosslinking in PCL and PU.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2015.10.089DOI Listing

Publication Analysis

Top Keywords

therapeutic radiation
12
ionizing radiation
8
average molecular
8
molecular weight
8
crosslinking pcl
8
hard segments
8
pcl
6
radiation
5
polymer
5
influence therapeutic
4

Similar Publications

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to determine the efficacy and safety of low-dose radiotherapy (LDR) for postoperative local chest wall recurrence of breast cancer.

Methods: The records of 52 patients with postoperative local chest wall recurrent breast cancer treated at our cancer center from January 2019 to December 2022. The t-test was used to compare the means of the LDR group and non LDR group.

View Article and Find Full Text PDF

Background: Esophageal cancer has a poor prognosis despite treatment advancements. Although the benefit of neoadjuvant chemoradiotherapy (CRT) followed by adjuvant immunotherapy is evident, the effects of CRT on PD-L1 expression in esophageal cancer are not well understood. This study examines the impact of neoadjuvant CRT on PD-L1 surface expression in esophageal cancer both and considering its implications for immunotherapy.

View Article and Find Full Text PDF

Objective: To perform a systematic review and meta-analysis to assess the relationship between intraprostatic maximum standardised uptake value (SUV) of the dominant prostatic lesion as measured on preoperative prostate-specific membrane antigen (PSMA) positron emission tomography (PET) with radical prostatectomy International Society of Urological Pathology (ISUP) Grade Group, pathological tumour (pT) staging, and biochemical recurrence (BCR).

Methods: Prostate-specific membrane antigen PET may offer non-invasive assessment of histopathological and oncological outcomes before definitive treatment. SUV of the dominant lesion has been explored as a prognostic biomarker.

View Article and Find Full Text PDF

Graves' disease diagnosed nearly six months after microwave ablation of benign thyroid nodules: a case report.

BMC Endocr Disord

January 2025

Department of Endocrine and Metabolic Diseases, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, 213000, Jiangsu, China.

Background: Microwave ablation is a new, minimally invasive technique for the treatment of thyroid nodules. Hyperthyroidism due to destructive thyroiditis is a known risk of microwave ablation, though it occurs in only a minority of cases. We report a rare case of a patient diagnosed with Graves' disease nearly six months after undergoing microwave ablation of a thyroid nodule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!