Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy.

Colloids Surf B Biointerfaces

Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.

Published: April 2016

Magnetic silica core/shell nanovehicles presenting atherosclerotic plaque-specific peptide-1 (AP-1) as a targeting ligand (MPVA-AP1 nanovehicles) have been prepared through a double-emulsion method and surface modification. Amphiphilic poly(vinyl alcohol) was introduced as a polymer binder to encapsulate various drug molecules (hydrophobic, hydrophilic, polymeric) and magnetic iron oxide (Fe3O4) nanoparticles. Under a high-frequency magnetic field, magnetic carriers (diameter: ca. 50 nm) incorporating the anti-cancer drug doxorubicin collapsed, releasing approximately 80% of the drug payload, due to the heat generated by the rapidly rotating Fe3O4 nanoparticles, thereby realizing rapid and accurate controlled drug release. Simultaneously, the magnetic Fe3O4 themselves could also kill the tumor cells through a hyperthermia effect (inductive heating). Unlike their ungrafted congeners (MPVA nanovehicles), the AP1-grafted nanovehicles bound efficiently to colorectal cancer cells (CT26-IL4Rα), thereby displaying tumor-cell selectivity. The combination of remote control, targeted dosing, drug-loading flexibility, and thermotherapy and chemotherapy suggests that magnetic nanovehicles such as MPVA-AP1 have great potential for application in cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2015.11.008DOI Listing

Publication Analysis

Top Keywords

controlled drug
8
drug release
8
colorectal cancer
8
cancer therapy
8
fe3o4 nanoparticles
8
nanovehicles
6
magnetic
6
drug
5
magnetically triggered
4
triggered nanovehicles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!