A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rapid Identification of Pseudomonas spp. via Raman Spectroscopy Using Pyoverdine as Capture Probe. | LitMetric

Pyoverdine is a substance which is excreted by fluorescent pseudomonads in order to scavenge iron from their environment. Due to specific receptors of the bacterial cell wall, the iron loaded pyoverdine molecules are recognized and transported into the cell. This process can be exploited for developing efficient isolation and enrichment strategies for members of the Pseudomonas genus, which are capable of colonizing various environments and also include human pathogens like P. aeruginosa and the less virulent P. fluorescens. A significant advantage over antibody based systems is the fact that siderophores like pyoverdine can be considered as "immutable ligands," since the probability for mutations within the siderophore uptake systems of bacteria is very low. While each species of Pseudomonas usually produces structurally unique pyoverdines, which can be utilized only by the producer strain, cross reactivity does occur. In order to achieve a reliable identification of the captured pathogens, further investigations of the isolated cells are necessary. In this proof of concept study, we combine the advantages of an isolation strategy relying on "immutable ligands" with the high specificity and speed of Raman microspectroscopy. In order to isolate the bacterial cells, pyoverdine was immobilized covalently on planar aluminum chip substrates. After capturing, single cell Raman spectra of the isolated species were acquired. Due to the specific spectroscopic fingerprint of each species, the bacteria can be identified. This approach allows a very rapid detection of potential pathogens, since time-consuming culturing steps are unnecessary. We could prove that pyoverdine based isolation of bacteria is fully Raman compatible and further investigated the capability of this approach by isolating and identifying P. aeruginosa and P. fluorescens from tap water samples, which are both opportunistic pathogens and can pose a threat for immunocompromised patients.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5b02829DOI Listing

Publication Analysis

Top Keywords

"immutable ligands"
8
pyoverdine
6
rapid identification
4
identification pseudomonas
4
pseudomonas spp
4
raman
4
spp raman
4
raman spectroscopy
4
spectroscopy pyoverdine
4
pyoverdine capture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!