On-farm biopurification systems (BPSs) treat pesticide-contaminated wastewater at farms through biodegradation and sorption processes. However, information on the microbiota involved in pesticide removal in BPSs is scarce. Here we report on the response of BPS bacterial communities to the herbicide linuron (BPS(+)) compared with the control (BPS(-)) in a microcosm experiment. Both denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of 16S rRNA gene fragments amplified from community DNA indicated shifts in the bacterial community after linuron application. Responding populations belonged to taxa that were previously reported from linuron degrading consortia cultivated from soil (Hyphomicrobiaceae, Comamonadaceae, Micrococcaceae). In addition, numerous taxa with increased relative abundance were identified that were previously not associated with linuron degradation. The relative abundance of IncP-1 korB copies increased in response to linuron application. Amplicon pyrosequencing of IncP-1 trfA genes revealed a high IncP-1 plasmid diversity and suggested that populations carrying IncP-1β plasmids increased in relative abundance. Transferable mercury resistance plasmids were exogenously captured from BPS(+)/BPS(-), and in three transconjugants from BPS(+) the gene hylA was detected. Our data suggest the existence of a multispecies linuron degrading bacterial food web and an involvement of IncP-1 plasmids in the adaptation of bacterial communities to pesticide pollution in BPSs.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiv157DOI Listing

Publication Analysis

Top Keywords

bacterial communities
12
relative abundance
12
response linuron
8
biopurification systems
8
linuron application
8
linuron degrading
8
increased relative
8
linuron
7
bacterial
5
exploring complex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!