Hierarchical Graphene-Containing Carbon Nanofibers for Lithium-Ion Battery Anodes.

ACS Appl Mater Interfaces

Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States.

Published: January 2016

We present a method to produce composite anodes consisting of thermally reduced graphene oxide-containing carbon nanofibers (TRGO/CNFs) via electrospinning a dispersion of polyacrylonitrile (PAN) and graphene oxide (GO) sheets in dimethylformamide followed by heat treatment at 650 °C. A range of GO (1-20 wt % GO relative to polymer concentration) was added to the polymer solution, with each sample comprising similar polymer chain packing and subsequent CNF microstructure, as assessed by X-ray diffraction. An increase from 0 to 20 wt % GO in the fibers led to carbonized nonwovens with enhanced electronic conductivity, as TRGO sheets conductively connected the CNFs. Galvanostatic half-cell cycling revealed that TRGO addition enhanced the specific discharge capacity of the fibers. The optimal GO concentration of 5 wt % GO enhanced first-cycle discharge capacities at C/24 rates (15.6 mA g(-1)) 150% compared to CNFs, with a 400% capacity increase at 2-C rates (750 mA g(-1)). We attribute the capacity enhancement to a high degree of GO exfoliation. The TRGO/CNFs also experienced no capacity fade after 200 cycles at 2-C rates. Impedance spectroscopy of the composite anodes demonstrated that charge-transfer resistances decreased as GO content increased, implying that high GO loadings result in more electrochemically active material.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b10069DOI Listing

Publication Analysis

Top Keywords

carbon nanofibers
8
composite anodes
8
2-c rates
8
hierarchical graphene-containing
4
graphene-containing carbon
4
nanofibers lithium-ion
4
lithium-ion battery
4
battery anodes
4
anodes method
4
method produce
4

Similar Publications

Electrochemical stability of electrospun silicon/carbon nanofiber anode materials: a review.

Phys Chem Chem Phys

January 2025

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Silicon (Si) is regarded as a promising anode material owing to its high specific capacity and low lithiation potential. The large volume change and the pulverization of silicon during the lithiation/delithiation process hinder its direct energy storage application. This review focuses on the electrospun silicon/carbon (Si/C) nanofiber anode materials for lithium-ion batteries for long-term stable energy storage.

View Article and Find Full Text PDF

Carbon-based nanofibers are critical materials with broad applications in industries such as energy, filtration, and biomedical devices. Polyacrylonitrile (PAN) is a primary precursor for carbon nanofibers, but conventional electrospinning techniques typically operate at low production rates of 0.1-1 mL/h from a single spinneret, limiting scalability.

View Article and Find Full Text PDF

Materials and devices that harvest acoustic energy can enable autonomous powering of microdevices and wireless sensors. However, traditional acoustic energy harvesters rely on brittle piezoceramics, which have restricted their use in wearable electronic devices. To address these limitations, this study involves the fabrication of acoustic harvesters using electrospinning of the piezoelectric polymer PVDF-TrFE onto fabric-based electrodes.

View Article and Find Full Text PDF

Graphene oxide supported MOFs-nanofiber carbon aerogel/SPCE for simultaneous detection of Cd and Pb in seafood.

Food Chem

December 2024

College of Chemistry and Life Sciences, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China. Electronic address:

A novel electrochemical sensor for detecting heavy metal ions in seafood was developed to address food safety concerns. The sensor integrates graphene oxide into NH-UiO-66 loaded nanofiber carbon aerogel, enhanced its three-dimensional conductive network and effective active surface area (0.34 cm), which improved ion enrichment and oxidation-reduction reaction rates.

View Article and Find Full Text PDF
Article Synopsis
  • To achieve carbon neutrality by 2050, capturing carbon dioxide from the atmosphere is essential, and direct air capture (DAC) using amine-based compounds is being researched for effectiveness.
  • Researchers developed thermosetting DAC nanofibers that show strong performance with low-temperature desorption and heat resistance by polymerizing amines with epoxy, using poly(vinyl alcohol) (PVA) for easier fabrication.
  • The resulting nanofiber webs demonstrated high CO adsorption capacity and efficient desorption, allowing for sustainable and low-energy recovery of CO while also maintaining stability over prolonged use.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!