The 15D3 mouse monoclonal antibody (mAb) binds an uncharacterized extracellular epitope of the ATP Binding Cassette (ABC) transporter human P-glycoprotein (Pgp). Depletion of cell plasma membrane cholesterol by using methyl-β-cyclodextrin or other chemically modified β-cyclodextrins decreased the Pgp binding affinity of 15D3 mAb. UIC2 mAb, which is known to distinguish two conformers of this ABC transporter, binds only a fraction of cell surface Pgps. UIC2 mAb non-reactive pools of Pgp can be identified with other extracellular mAbs such as 15D3. Cyclosporin A (CsA) can shift non-reactive Pgps into their UIC2-reactive conformation: a phenomenon called the "UIC2 shift". Competition studies proposed these two mAbs share overlapping epitopes and can reveal conformational changes of Pgp that correlate (r=0.97) with the cholesterol content of cells. An apparent increase in competition of these mAbs suggested a conformational change similar to those found in the presence of CsA. However, the reason turned out not to be the UIC2-shift because cholesterol removal from the plasma membrane (PM) reduced the amount of detectable Pgps by 15D3 mAb. This study showed that 15D3 mAb bound to a conformation sensitive epitope of Pgp that was responsive to PM cholesterol levels. These conformational changes were gradual and not as great as the changes observed between the two conformers recognized by the UIC2 mAb.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbalip.2015.12.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!